Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ray, Arunima"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Casson towers and filtrations of the smooth knot concordance group
    (2014-04-16) Ray, Arunima; Cochran, Tim D.; Harvey, Shelly; Warren, Joe
    The 4-dimensional equivalence relation of concordance (smooth or topological) gives a group structure on the set of knots, under the connected-sum operation. The n-solvable filtration of the knot concordance group (denoted C), due to Cochran-Orr-Teichner, has been instrumental in the study of knot concordance in recent years. Part of its significance is due to the fact that certain geometric attributes of a knot imply membership in various levels of the filtration. We show the counterpart of this fact for two new filtrations of C due to Cochran-Harvey-Horn, the positive and negative filtrations. The positive and negative filtrations have definitions similar to that of the n-solvable filtration, but have the ability (unlike the n-solvable filtrations) to distinguish between smooth and topological concordance. Our geometric counterparts for the positive and negative filtrations of C are defined in terms of Casson towers, 4-dimensional objects which approximate disks in a precise manner. We establish several relationships between these new Casson tower filtrations and the various previously known filtrations of C, such as the n-solvable, positive, negative, and grope filtrations. These relationships allow us to draw connections between some well-known open questions in the field.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892