Browsing by Author "Qiang, Karen M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Burrowing/Tunneling Assay for Detection of Hypoxia in Drosophila melanogaster Larvae(JoVE, 2018) Qiang, Karen M.; Zhou, Fanli; Beckingham, Kathleen M.Oxygen deprivation in animals can result from exposure to low atmospheric oxygen levels or from internal tissue damage that interferes with oxygen distribution. It is also possible that aberrant behavior of oxygen-sensing neurons could induce hypoxia-like behavior in the presence of normal oxygen levels. In D. melanogaster, development at low oxygen levels results in inhibition of growth and sluggish behavior during the larval phases. However, these established manifestations of oxygen deficit overlap considerably with the phenotypes of many mutations that regulate growth, stress responses or locomotion. As result, there is currently no assay available to identify i) cellular hypoxia induced by a mutation or ii) hypoxia-like behavior when induced by abnormal neuronal behavior. We have recently identified two distinctive behaviors in D. melanogaster larvae that occur at normal oxygen levels in response to internal detection of hypoxia. First, at all stages, such larvae avoid burrowing into food, often straying far away from a food source. Second, tunneling into a soft substratum, which normally occurs during the wandering third instar stage is completely abolished if larvae are hypoxic. The assay described here is designed to detect and quantitate these behaviors and thus to provide a way to detect hypoxia induced by internal damage rather than low external oxygen. Assay plates with an agar substratum and a central plug of yeast paste are used to support animals through larval life. The positions and state of the larvae are tracked daily as they proceed from first to third instar. The extent of tunneling into the agar substratum during wandering phase is quantitated after pupation using NIH ImageJ. The assay will be of value in determining when hypoxia is a component of a mutant phenotype and thus provide insight into possible sites of action of the gene in question.Item Failure to Burrow and Tunnel Reveals Roles forᅠjim lovellᅠin the Growth and Endoreplication of the Drosophila Larval Tracheae(Public Library of Science, 2016) Zhou, Fanli; Qiang, Karen M.; Beckingham, Kathleen M.The Drosophila protein Jim Lovell (Lov) is a putative transcription factor of the BTB/POZ (Bric- a-Brac/Tramtrack/Broad/ᅠPox virus andᅠZinc finger) domain class that is expressed in many elements of the developing larval nervous system. It has roles in innate behaviors such as larval locomotion and adult courtship. In performing tissue-specific knockdown with the Gal4-UAS system we identified a new behavioral phenotype forᅠlov: larvae failed to burrow into their food during their growth phase and then failed to tunnel into an agarose substratum during their wandering phase. We determined that these phenotypes originate in a previously unrecognized role forᅠlovᅠin the tracheae. By using tracheal-specific Gal4 lines, Lov immunolocalization and aᅠlovᅠenhancer trap line, we established thatᅠlovᅠis normally expressed in the tracheae from late in embryogenesis through larval life. Using an assay that monitors food burrowing, substrate tunneling and death we showed thatᅠlovᅠtracheal knockdown results in tracheal fluid-filling, producing hypoxia that activates the aberrant behaviors and inhibits development. We investigated the role ofᅠlovᅠin the tracheae that initiates this sequence of events. We discovered that whenᅠlovᅠlevels are reduced, the tracheal cells are smaller, more numerous and show lower levels of endopolyploidization. Together our findings indicate that Lov is necessary for tracheal endoreplicative growth and that its loss in this tissue causes loss of tracheal integrity resulting in chronic hypoxia and abnormal burrowing and tunneling behavior.