Browsing by Author "Poumirol, J.M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Hall and field-effect mobilities in few layeredᅠp-WSe2ᅠfield-effect transistors(Macmillan Publishers Limited, 2015) Pradhan, N.R.; Rhodes, D.; Memaran, S.; Poumirol, J.M.; Smirnov, D.; Talapatra, S.; Feng, S.; Perea-Lopez, N.; Elias, A.L.; Terrones, M.; Ajayan, P.M.; Balicas, L.Here, we present a temperature (T) dependent comparison between field-effect and Hall mobilities in field-effect transistors based on few-layered WSe2 exfoliated onto SiO2. Without dielectric engineering and beyond a T-dependent threshold gate-voltage, we observe maximum hole mobilities approaching 350 cm(2)/Vs at T = 300 K. The hole Hall mobility reaches a maximum value of 650 cm(2)/Vs as T is lowered below ~150 K, indicating that insofar WSe2-based field-effect transistors (FETs) display the largest Hall mobilities among the transition metal dichalcogenides. The gate capacitance, as extracted from the Hall-effect, reveals the presence of spurious charges in the channel, while the two-terminal sheet resistivity displays two-dimensional variable-range hopping behavior, indicating carrier localization induced by disorder at the interface between WSe2 and SiO2. We argue that improvements in the fabrication protocols as, for example, the use of a substrate free of dangling bonds are likely to produce WSe2-based FETs displaying higher room temperature mobilities, i.e. approaching those of p-doped Si, which would make it a suitable candidate for high performance opto-electronics.Item Measurement of Filling-Factor-Dependent Magnetophonon Resonances in Graphene Using Raman Spectroscopy(American Physical Society, 2013-05-29) Kim, Y.; Poumirol, J.M.; Lombardo, A.; Kalugin, N.G.; Georgiou, T.; Kim, Y.J.; Novoselov, K.S.; Ferrari, A.C.; Kono, J.; Kashuba, O.; Fal’ko, V.I.; Smirnov, D.We perform polarization-resolved Raman spectroscopy on graphene in magnetic fields up to 45 T. This reveals a filling-factor-dependent, multicomponent anticrossing structure of the Raman G peak, resulting from magnetophonon resonances between magnetoexcitons and E2g phonons. This is explained with a model of Raman scattering taking into account the effects of spatially inhomogeneous carrier densities and strain. Random fluctuations of strain-induced pseudomagnetic fields lead to increased scattering intensity inside the anticrossing gap, consistent with the experiments.