Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Potra, Florian"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    An Interior-Point Method with Polynomial Complexity and Superlinear Convergence for Linear Complementarity Problems
    (1991-07) Ji, Jun; Potra, Florian; Tapia, Richard; Zhang, Yin
    For linear programming, a primal-dual interior-point algorithm was recently constructed by Zhang and Tapia that achieves both polynomial complexity and Q-superlinear convergence (Q-quadratic in the nondegenerate case). In this paper, we extend their results to quadratic programming and linear complementarity problems.
  • Loading...
    Thumbnail Image
    Item
    On Effectively Computing the Analytic Center of the Solution Set by Primal-Dual Interior-Point Methods
    (1995-08) González-Lima, María D.; Tapia, Richard A.; Potra, Florian
    The computation of the analytic center of the solution set can be important in linear programming applications where it is desirable to obtain a solution that is not near the relative boundary of the solution set. In this work we discuss the effective computation of the analytic center solution by the use of primal-dual interior-point methods. A primal-dual interior-point algorithm designed for effectively computing the analytic-center solution is proposed and theory and numerical results are presented.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892