Browsing by Author "Potoyan, Davit A."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes(National Academy of Sciences of the United States of America, 2018) Di Pierro, Michele; Potoyan, Davit A.; Wolynes, Peter G.; Onuchic, José NelsonThe nucleus of a eukaryotic cell is a nonequilibrium system where chromatin is subjected to active processes that continuously rearrange it over the cell's life cycle. Tracking the motion of chromosomal loci provides information about the organization of the genome and the physical processes shaping that organization. Optical experiments report that loci move with subdiffusive dynamics and that there is spatially coherent motion of the chromatin. We recently showed that it is possible to predict the 3D architecture of genomes through a physical model for chromosomes that accounts for the biochemical interactions mediated by proteins and regulated by epigenetic markers through a transferable energy landscape. Here, we study the temporal dynamics generated by this quasi-equilibrium energy landscape assuming Langevin dynamics at an effective temperature. Using molecular dynamics simulations of two interacting human chromosomes, we show that the very same interactions that account for genome architecture naturally reproduce the spatial coherence, viscoelasticity, and the subdiffusive behavior of the motion in interphase chromosomes as observed in numerous experiments. The agreement between theory and experiments suggests that even if active processes are involved, an effective quasi-equilibrium landscape model can largely mimic their dynamical effects.Item Dichotomous noise models of gene switches(AIP Publishing LLC., 2015) Potoyan, Davit A.; Wolynes, Peter G.; Center for Theoretical Biological PhysicsMolecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.Item Modeling the therapeutic efficacy of NFκBsynthetic decoy oligodeoxynucleotides (ODNs)(BMC, 2018) Wang, Zhipeng; Potoyan, Davit A.; Wolynes, Peter G.; Center for Theoretical Biological PhysicsBackground: Transfection of NF κB synthetic decoy Oligodeoxynucleotides (ODNs) has been proposed as a promising therapeutic strategy for a variety of diseases arising from constitutive activation of the eukaryotic transcription factor NF κB. The decoy approach faces some limitations under physiological conditions notably nuclease-induced degradation. Results: In this work, we show how a systems pharmacology model of NF κB regulatory networks displaying oscillatory temporal dynamics, can be used to predict quantitatively the dependence of therapeutic efficacy of NF κB synthetic decoy ODNs on dose, unbinding kinetic rates and nuclease-induced degradation rates. Both deterministic mass action simulations and stochastic simulations of the systems biology model show that the therapeutic efficacy of synthetic decoy ODNs is inversely correlated with unbinding kinetic rates, nuclease-induced degradation rates and molecular stripping rates, but is positively correlated with dose. We show that the temporal coherence of the stochastic dynamics of NF κB regulatory networks is most sensitive to adding NF κB synthetic decoy ODNs having unbinding time-scales that are in-resonance with the time-scale of the limit cycle of the network. Conclusions: The pharmacokinetics/pharmacodynamics (PK/PD) predicted by the systems-level model should provide quantitative guidance for in-depth translational research of optimizing the thermodynamics/kinetic properties of synthetic decoy ODNs.Item Molecular stripping, targets and decoys as modulators of oscillations in the NF-κB/IκBα/DNA genetic network(The Royal Society, 2016) Wang, Zhipeng; Potoyan, Davit A.; Wolynes, Peter G.; Center for Theoretical Biological PhysicsEukaryotic transcription factors in the NF-κB family are central components of an extensive genetic network that activates cellular responses to inflammation and to a host of other external stressors. This network consists of feedback loops that involve the inhibitor IκBα, numerous downstream functional targets, and still more numerous binding sites that do not appear to be directly functional. Under steady stimulation, the regulatory network of NF-κB becomes oscillatory, and temporal patterns of NF-κB pulses appear to govern the patterns of downstream gene expression needed for immune response. Understanding how the information from external stress passes to oscillatory signals and is then ultimately relayed to gene expression is a general issue in systems biology. Recently, in vitro kinetic experiments as well as molecular simulations suggest that active stripping of NF-κB by IκBα from its binding sites can modify the traditional systems biology view of NF-κB/IκBα gene circuits. In this work, we revise the commonly adopted minimal model of the NF-κB regulatory network to account for the presence of the large number of binding sites for NF-κB along with dissociation from these sites that may proceed either by passive unbinding or by active molecular stripping. We identify regimes where the kinetics of target and decoy unbinding and molecular stripping enter a dynamic tug of war that may either compensate each other or amplify nuclear NF-κB activity, leading to distinct oscillatory patterns. Our finding that decoys and stripping play a key role in shaping the NF-κB oscillations suggests strategies to control NF-κB responses by introducing artificial decoys therapeutically.Item Resolving the NFκB Heterodimer Binding Paradox: Strain and Frustration Guide the Binding of Dimeric Transcription Factors(American Chemical Society, 2017) Potoyan, Davit A.; Bueno, Carlos; Zheng, Weihua; Komives, Elizabeth A.; Wolynes, Peter G.Many eukaryotic transcription factors function after forming oligomers. The choice of protein partners is a nonrandom event that has distinct functional consequences for gene regulation. In the present work we examine three dimers of transcription factors in the NFκB family: p50p50, p50p65, and p65p65. The NFκB dimers bind to a myriad of genomic sites and switch the targeted genes on or off with precision. The p65p50 heterodimer of NFκB is the strongest DNA binder, and its unbinding is controlled kinetically by molecular stripping from the DNA induced by IκB. In contrast, the homodimeric forms of NFκB, p50p50 and p65p65, bind DNA with significantly less affinity, which places the DNA residence of the homodimers under thermodynamic rather than kinetic control. It seems paradoxical that the heterodimer should bind more strongly than either of the symmetric homodimers since DNA is a nearly symmetric target. Using a variety of energy landscape analysis tools, here we uncover the features in the molecular architecture of NFκB dimers that are responsible for these drastically different binding free energies. We show that frustration in the heterodimer interface gives the heterodimer greater conformational plasticity, allowing the heterodimer to better accommodate the DNA. We also show how the elastic energy and mechanical strain in NFκB dimers can be found by extracting the principal components of the fluctuations in Cartesian coordinates as well as fluctuations in the space of physical contacts, which are sampled via simulations with a predictive energy landscape Hamiltonian. These energetic contributions determine the specific detailed mechanisms of binding and stripping for both homo- and heterodimers.Item Stochastic dynamics of genetic broadcasting networks(American Physical Society, 2017) Potoyan, Davit A.; Wolynes, Peter G.; Center for Theoretical Biological PhysicsThe complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a “time-scale crisis” for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκB which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.