Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Posada, David"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Crykey: Rapid identification of SARS-CoV-2 cryptic mutations in wastewater
    (Springer Nature, 2024) Liu, Yunxi; Sapoval, Nicolae; Gallego-García, Pilar; Tomás, Laura; Posada, David; Treangen, Todd J.; Stadler, Lauren B.
    Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging variants of concerns and can be used to screen for novel cryptic linked-read mutations, which are co-occurring single nucleotide mutations that are rare, or entirely missing, in existing SARS-CoV-2 databases. While previous approaches have focused on specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and investigating their potential origin. We present Crykey, a tool for rapidly identifying rare linked-read mutations across the genome of SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and over 22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations in wastewater that represent potential circulating cryptic lineages, serving as a new computational tool for wastewater surveillance of SARS-CoV-2.
  • Loading...
    Thumbnail Image
    Item
    Limited genomic reconstruction of SARS-CoV-2 transmission history within local epidemiological clusters
    (Oxford University Press, 2022) Gallego-García, Pilar; Varela, Nair; Estévez-Gómez, Nuria; De Chiara, Loretta; Fernández-Silva, Iria; Valverde, Diana; Sapoval, Nicolae; Treangen, Todd J; Regueiro, Benito; Cabrera-Alvargonzález, Jorge Julio; del Campo, Víctor; Pérez, Sonia; Posada, David
    A detailed understanding of how and when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission occurs is crucial for designing effective prevention measures. Other than contact tracing, genome sequencing provides information to help infer who infected whom. However, the effectiveness of the genomic approach in this context depends on both (high enough) mutation and (low enough) transmission rates. Today, the level of resolution that we can obtain when describing SARS-CoV-2 outbreaks using just genomic information alone remains unclear. In order to answer this question, we sequenced forty-nine SARS-CoV-2 patient samples from ten local clusters in NW Spain for which partial epidemiological information was available and inferred transmission history using genomic variants. Importantly, we obtained high-quality genomic data, sequencing each sample twice and using unique barcodes to exclude cross-sample contamination. Phylogenetic and cluster analyses showed that consensus genomes were generally sufficient to discriminate among independent transmission clusters. However, levels of intrahost variation were low, which prevented in most cases the unambiguous identification of direct transmission events. After filtering out recurrent variants across clusters, the genomic data were generally compatible with the epidemiological information but did not support specific transmission events over possible alternatives. We estimated the effective transmission bottleneck size to be one to two viral particles for sample pairs whose donor–recipient relationship was likely. Our analyses suggest that intrahost genomic variation in SARS-CoV-2 might be generally limited and that homoplasy and recurrent errors complicate identifying shared intrahost variants. Reliable reconstruction of direct SARS-CoV-2 transmission based solely on genomic data seems hindered by a slow mutation rate, potential convergent events, and technical artifacts. Detailed contact tracing seems essential in most cases to study SARS-CoV-2 transmission at high resolution.
  • Loading...
    Thumbnail Image
    Item
    Phylovar: toward scalable phylogeny-aware inference of single-nucleotide variations from single-cell DNA sequencing data
    (Oxford University Press, 2022) Edrisi, Mohammadamin; Valecha, Monica V.; Chowdary, Sunkara B.V.; Robledo, Sergio; Ogilvie, Huw A.; Posada, David; Zafar, Hamim; Nakhleh, Luay
    Single-nucleotide variants (SNVs) are the most common variations in the human genome. Recently developed methods for SNV detection from single-cell DNA sequencing data, such as SCIΦ and scVILP, leverage the evolutionary history of the cells to overcome the technical errors associated with single-cell sequencing protocols. Despite being accurate, these methods are not scalable to the extensive genomic breadth of single-cell whole-genome (scWGS) and whole-exome sequencing (scWES) data.Here, we report on a new scalable method, Phylovar, which extends the phylogeny-guided variant calling approach to sequencing datasets containing millions of loci. Through benchmarking on simulated datasets under different settings, we show that, Phylovar outperforms SCIΦ in terms of running time while being more accurate than Monovar (which is not phylogeny-aware) in terms of SNV detection. Furthermore, we applied Phylovar to two real biological datasets: an scWES triple-negative breast cancer data consisting of 32 cells and 3375 loci as well as an scWGS data of neuron cells from a normal human brain containing 16 cells and approximately 2.5 million loci. For the cancer data, Phylovar detected somatic SNVs with high or moderate functional impact that were also supported by bulk sequencing dataset and for the neuron dataset, Phylovar identified 5745 SNVs with non-synonymous effects some of which were associated with neurodegenerative diseases.Phylovar is implemented in Python and is publicly available at https://github.com/NakhlehLab/Phylovar.
  • Loading...
    Thumbnail Image
    Item
    SARS-CoV-2 genomic diversity and the implications for qRT-PCR diagnostics and transmission
    (Cold Spring Harbor Laboratory Press, 2021) Sapoval, Nicolae; Mahmoud, Medhat; Jochum, Michael D.; Liu, Yunxi; Elworth, R. A. Leo; Wang, Qi; Albin, Dreycey; Ogilvie, Huw A.; Lee, Michael D.; Villapol, Sonia; Hernandez, Kyle M.; Berry, Irina Maljkovic; Foox, Jonathan; Beheshti, Afshin; Ternus, Krista; Aagaard, Kjersti M.; Posada, David; Mason, Christopher E.; Sedlazeck, Fritz J.; Treangen, Todd J.
    The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymorphisms (SNPs) that differentiate the main SARS-CoV-2 lineages that have spread throughout the world. In this study, we investigated 129 RNA-seq data sets and 6928 consensus genomes to contrast the intra-host and inter-host diversity of SARS-CoV-2. Our analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights intra-host single nucleotide variant (iSNV) and SNP similarity, albeit with differences in C > U changes. Second, iSNV and SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of insertions and deletions contribute to the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the transmission of SARS-CoV-2.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892