Browsing by Author "Pitkow, Xaq"
Now showing 1 - 20 of 25
Results Per Page
Sort Options
Item Beta activity in human anterior cingulate cortex mediates reward biases(Springer Nature, 2024) Xiao, Jiayang; Adkinson, Joshua A.; Myers, John; Allawala, Anusha B.; Mathura, Raissa K.; Pirtle, Victoria; Najera, Ricardo; Provenza, Nicole R.; Bartoli, Eleonora; Watrous, Andrew J.; Oswalt, Denise; Gadot, Ron; Anand, Adrish; Shofty, Ben; Mathew, Sanjay J.; Goodman, Wayne K.; Pouratian, Nader; Pitkow, Xaq; Bijanki, Kelly R.; Hayden, Benjamin; Sheth, Sameer A.The rewards that we get from our choices and actions can have a major influence on our future behavior. Understanding how reward biasing of behavior is implemented in the brain is important for many reasons, including the fact that diminution in reward biasing is a hallmark of clinical depression. We hypothesized that reward biasing is mediated by the anterior cingulate cortex (ACC), a cortical hub region associated with the integration of reward and executive control and with the etiology of depression. To test this hypothesis, we recorded neural activity during a biased judgment task in patients undergoing intracranial monitoring for either epilepsy or major depressive disorder. We found that beta (12–30 Hz) oscillations in the ACC predicted both associated reward and the size of the choice bias, and also tracked reward receipt, thereby predicting bias on future trials. We found reduced magnitude of bias in depressed patients, in whom the beta-specific effects were correspondingly reduced. Our findings suggest that ACC beta oscillations may orchestrate the learning of reward information to guide adaptive choice, and, more broadly, suggest a potential biomarker for anhedonia and point to future development of interventions to enhance reward impact for therapeutic benefit.Item Biophysically Plausible Learning in the Brain via Eligibility Traces: Cortical Sequences, Hippocampal Place Cells, and Dopaminergic Reward Prediction Error(2021-08-25) Cone, Ian; Shouval, Harel; Pitkow, XaqThe brain’s ability to learn and associate temporally distal stimuli is one of its most fundamental (and puzzling) functions. The behaviorally relevant time scales (hundreds of milliseconds to seconds) at which the brain must link actions to reward are largely incompatible with Hebbian or STDP-like correlative learning rules. To solve this conundrum, we posit that two types of Hebbian activated, synapse specific “eligibility traces” – one associated with long term potentiation and the other long term depression – act as long lasting synaptic “tags” of previous activity . Upon presentation of a reinforcement signal, these two traces act in competition to determine long term changes in synaptic strength. In this work, we demonstrate the efficacy of this two-trace learning rule in three separate models. The first focuses on the learning and recall of uncompressed temporal sequences, based on recent experimental data from the visual cortex. The second model replicates so called “behavioral time scale plasticity” in hippocampal CA1, where the induction of a dendritic calcium spike triggers plasticity in place fields well in the past or future along the track traversal. Finally, this thesis showcases a model of dopaminergic cells demonstrating reward prediction error, including in the context of various “blocking” and “unblocking” paradigms. These models adhere to biophysical realism as much as possible; leaky-integrate-and-fire neurons with realistic noise are used when appropriate, and the models are either based on or replicate experimental results. Notably, and in contrast to many contemporary models which deal with the temporal credit assignment problem, eligibility traces allow for the principles of locality and causality to always be conserved. The success of these models presents a compelling case for the widespread utility of eligibility traces across a wide range of temporal tasks, and the models’ adherence to biophysical realism lend plausibility to the idea that eligibility traces are actually implemented in such a manner in the brain.Item Embargo Cost of Computation(2024-08-06) Boominathan, Lokesh; Pitkow, XaqThe brain's computations are constrained by factors such as metabolic expenses for neural activity and signal noise. In this thesis, we investigate how the brain performs complex tasks under such constraints. We focus on two specific tasks to explore these computational costs. First, we analyze the brain's process of making inferences from ambiguous sensory information. This task involves optimizing inference performance while considering the energy cost of transmitting reliable information between different cortical regions. We found that for sensory inputs that are sufficiently predictable, it is advantageous to send predictions from higher to lower cortical areas to conserve energy. However, when signals are harder to predict, it becomes best to send the raw sensory input directly from lower to higher cortical regions. We demonstrate how the required predictability for sending predictions changes according to different computational constraints. Second, we explore a task where attentiveness is required to earn rewards but incurs a cost. We aim to understand how the brain balances reducing attention costs against obtaining rewards. To do this, we propose a reinforcement learning-based normative model to determine how to strategically deploy attention, and how it varies with task utility and signal statistics. Our model suggests that efficient attention involves alternating blocks of high and low attention. In extreme cases, where sensory input is quite weak during low attention states, we see that high attention is used rhythmically.Item Decoding Depression Severity From Intracranial Neural Activity(Elsevier, 2023) Xiao, Jiayang; Provenza, Nicole R.; Asfouri, Joseph; Myers, John; Mathura, Raissa K.; Metzger, Brian; Adkinson, Joshua A.; Allawala, Anusha B.; Pirtle, Victoria; Oswalt, Denise; Shofty, Ben; Robinson, Meghan E.; Mathew, Sanjay J.; Goodman, Wayne K.; Pouratian, Nader; Schrater, Paul R.; Patel, Ankit B.; Tolias, Andreas S.; Bijanki, Kelly R.; Pitkow, Xaq; Sheth, Sameer A.Background Disorders of mood and cognition are prevalent, disabling, and notoriously difficult to treat. Fueling this challenge in treatment is a significant gap in our understanding of their neurophysiological basis. Methods We recorded high-density neural activity from intracranial electrodes implanted in depression-relevant prefrontal cortical regions in 3 human subjects with severe depression. Neural recordings were labeled with depression severity scores across a wide dynamic range using an adaptive assessment that allowed sampling with a temporal frequency greater than that possible with typical rating scales. We modeled these data using regularized regression techniques with region selection to decode depression severity from the prefrontal recordings. Results Across prefrontal regions, we found that reduced depression severity is associated with decreased low-frequency neural activity and increased high-frequency activity. When constraining our model to decode using a single region, spectral changes in the anterior cingulate cortex best predicted depression severity in all 3 subjects. Relaxing this constraint revealed unique, individual-specific sets of spatiospectral features predictive of symptom severity, reflecting the heterogeneous nature of depression. Conclusions The ability to decode depression severity from neural activity increases our fundamental understanding of how depression manifests in the human brain and provides a target neural signature for personalized neuromodulation therapies.Item Dynamical latent state computation in the male macaque posterior parietal cortex(Springer Nature, 2023) Lakshminarasimhan, Kaushik J.; Avila, Eric; Pitkow, Xaq; Angelaki, Dora E.Success in many real-world tasks depends on our ability to dynamically track hidden states of the world. We hypothesized that neural populations estimate these states by processing sensory history through recurrent interactions which reflect the internal model of the world. To test this, we recorded brain activity in posterior parietal cortex (PPC) of monkeys navigating by optic flow to a hidden target location within a virtual environment, without explicit position cues. In addition to sequential neural dynamics and strong interneuronal interactions, we found that the hidden state - monkey’s displacement from the goal - was encoded in single neurons, and could be dynamically decoded from population activity. The decoded estimates predicted navigation performance on individual trials. Task manipulations that perturbed the world model induced substantial changes in neural interactions, and modified the neural representation of the hidden state, while representations of sensory and motor variables remained stable. The findings were recapitulated by a task-optimized recurrent neural network model, suggesting that task demands shape the neural interactions in PPC, leading them to embody a world model that consolidates information and tracks task-relevant hidden states.Item Essential nonlinear properties in neural decoding(2018-06-04) Yang, Qianli; Pitkow, XaqThe sensory data about most natural task-relevant variables is confounded by task-irrelevant sensory variations, called nuisance variables. To be useful, the sensory signals that encode the relevant variables must be untangled from the nuisance variables through nonlinear recoding transformations, before the brain can use or decode them to drive behaviors. The information to be untangled is represented in the cortex by the activity of large populations of neurons, constituting a nonlinear population code. In this thesis I provide three major contributions in theoretical neuroscience. First, I provide a new way of thinking about nonlinear population codes and nuisance variables, leading to a theory of nonlinear feedforward decoding of neural population activity. This theory obeys fundamental mathematical limitations on information content that are inherited from the sensory periphery, producing redundant codes when there are many more cortical neurons than primary sensory neurons. Second, and critically for experimental testing, I provide a theory that predicts a simple, easily computed quantitative relationship between fluctuating neural activity and behavioral choices if the brain uses its nonlinear population codes optimally: more informative patterns should be more correlated with choices. To validate this theory, I show that when primates discriminate between a wide or narrow distribution from which oriented images could be sampled, quadratic statistics of primary visual cortex activity match this predicted pattern. Third, I contribute new concepts and methods to characterize behaviorally relevant nonlinear computation downstream of recorded neurons. Since many neural transformations can generate the same behavioral output, I will define a new concept of equivalence classes for neural transformations based on the degeneracy of the decoding. This suggests that we can understand the neural transformations by picking a convenient nonlinear basis that approximates the actual neural transformation up to an equivalence relation given by the intrinsic uncertainty, instead of trying to reproduce the biophysical details. Then I extend the concept of redundant codes to a more general scenario: when different subsets of neural response statistics contain limited information about the stimulus. This extension allows us understand the neural computation at the representational level --- extracting representations for different subsets of neural nonlinear statistics, characterizing how these representations transform the information about task-relevant variables and studying the coarse-grained computations on these representations.Item Exploring Spatial Resolution in Image Processing(2021-04-30) Yu, Lantao; Orchard, Michael T.; Baraniuk, Richard G.; Pitkow, Xaq; Kyrillidis, Anastasios; Guleryuz, Onur G.Motivated by the human visual system’s instinct to explore details, image processing algorithms designed to facilitate the viewer’s interpretation of details in an image are ubiquitous. Such algorithms seek to extract the highest spatial frequency information that an original image has to offer, and to render that information clearly to the viewer in the form of an image with often an increased number of pixels. This thesis focuses on methods for extracting the highest possible spatial frequency information from digital imagery. Classical sampling theory provides a full understanding of the highest possible spatial frequency information that can be represented by sampled images that have been spatially band-limited to the Nyquist rate. However, natural digital images are rarely band-limited and often carry substantial energy (and information) at frequencies well beyond the Nyquist rate. My research investigates approaches for extracting information from this out-of-band (beyond the Nyquist frequency limit) energy and proposes algorithms to use that information to generate images with higher spatial resolution. This thesis pursues three approaches to extracting high spatial frequency information from digital imagery, based on frequency, spatial, and cross-channel perspectives to the problem. a) Coefficients representing out-of-band high-frequency contents are closely related to co-located coefficients representing in-band, low-frequency contents. The frequency perspective seeks to exploit those relationships to estimate both the uncorrupted out-of-band and in-band coefficients representing an image with higher spatial resolution; b) Spatial patches (blocks of pixels) of an image are known to be similar to other spatial patches elsewhere in the image. Thus, a patch with high-resolution details that has an insufficient number of samples to accurately represent its details could benefit from its similarity to other spatial patches. Although each individual patch may still be insufficiently sampled to retain its details, the ensemble of samples from the collection of similar patches provides a richer sampling pattern that I seek to exploit in the spatial perspective to the problem; c) In some imaging settings, multiple electro-magnetic channels of images are available from the same scene, with different imaging modalities offering different sensor information, each with its own spatial resolution. The cross-channel perspective seeks to exploit cross-channel proximity to produce high-resolution versions of multiple channels.Item How Can Single Sensory Neurons Predict Behavior?(Elsevier, 2015) Pitkow, Xaq; Liu, Sheng; Angelaki, Dora E.; DeAngelis, Gregory C.; Pouget, AlexSingleᅠsensory neuronsᅠcan be surprisingly predictive of behavior in discrimination tasks. We propose this isᅠpossible because sensory information extracted from neural populations is severely restricted, either by near-optimal decoding of a population with information-limiting correlations or by suboptimal decoding that is blind to correlations. These have different consequences for choice correlations, the correlations between neural responses and behavioral choices. In theᅠvestibularᅠandᅠcerebellar nucleiᅠand the dorsalᅠmedial superior temporal area, we found that choice correlations during heading discrimination are consistent with near-optimal decoding ofᅠneuronal responses corrupted by information-limiting correlations. In the ventral intraparietal area, the choice correlations are also consistent with the presence of information-limiting correlations, but this area does not appear to influence behavior, although the choice correlations are particularly large. These findings demonstrate how choice correlations can be used to assess the efficiency of the downstream readout and detect the presence of information-limiting correlations.Item Inductive biases of neural network modularity in spatial navigation(AAAS, 2024) Zhang, Ruiyi; Pitkow, Xaq; Angelaki, Dora E.The brain may have evolved a modular architecture for daily tasks, with circuits featuring functionally specialized modules that match the task structure. We hypothesize that this architecture enables better learning and generalization than architectures with less specialized modules. To test this, we trained reinforcement learning agents with various neural architectures on a naturalistic navigation task. We found that the modular agent, with an architecture that segregates computations of state representation, value, and action into specialized modules, achieved better learning and generalization. Its learned state representation combines prediction and observation, weighted by their relative uncertainty, akin to recursive Bayesian estimation. This agent’s behavior also resembles macaques’ behavior more closely. Our results shed light on the possible rationale for the brain’s modularity and suggest that artificial systems can use this insight from neuroscience to improve learning and generalization in natural tasks.Item Inference as Control predicts Phase transitions in when Feedback is useful(2021-08-09) Boominathan, Lokesh; Pitkow, XaqSensory observations about the world are invariably ambiguous. Inference about the world's latent variables is thus an important computation for the brain. However, computational constraints limit the performance of these computations. These constraints include energetic costs for neural activity and noise for every channel. Efficient coding is a prominent theory that describes how limited resources can be used best. In one incarnation, this leads to a theory of predictive coding, where predictions are subtracted from signals, reducing the cost of sending something that is already known. This theory does not, however, account for the costs or noise associated with those predictions. Here we offer a theory that accounts for both feedforward and feedback costs, and noise in all computations. We formulate this inference problem as message-passing on a graph whereby feedback is viewed as a control signal aiming to maximize how well an inference tracks a target state while minimizing the costs of computation. We apply this novel formulation of inference as control to the canonical problem of inferring the hidden scalar state of a linear dynamical system with Gaussian variability. Our theory predicts the gain of optimal predictive feedback and how it is incorporated into the inference computation. We show that there is a non-monotonic dependence of optimal feedback gain as a function of both the computational parameters and the world dynamics, and we reveal phase transitions in whether feedback provides any utility in optimal inference under computational costs.Item Inference by Reparameterization using Neural Population Codes(2015-12-04) Vasudeva Raju, Rajkumar; Pitkow, Xaq; Aazhang, Behnaam; Ernst, Philip; Josic, KresimirBehavioral experiments on humans and animals suggest that the brain performs probabilistic inference to interpret its environment. Here we present a general-purpose, biologically plausible implementation of approximate inference based on Probabilistic Population Codes (PPCs). PPCs are distributed neural representations of probability distributions that are capable of implementing marginalization and cue-integration in a biologically plausible way. By connecting multiple PPCs together, we can naturally represent multivariate probability distributions, and capture the conditional dependency structure by setting those connections as in a probabilistic graphical model. To perform inference in general graphical models, one convenient and often accurate algorithm is Loopy Belief Propagation (LBP), a ‘message-passing’ algorithm that uses local marginalization and integration operations to perform approximate inference efficiently even for complex models. In LBP, a message from one node to a neighboring node is a function of incoming messages from all neighboring nodes, except the recipient. This exception renders it neurally implausible because neurons cannot readily send many different signals to many different target neurons. Interestingly, however, LBP can be reformulated as a sequence of Tree-based Re-Parameterization (TRP) updates on the graphical model which re-factorizes a portion of the probability distribution. Although this formulation still implicitly has the message exclusion problem, we show this can be circumvented by converting the algorithm to a nonlinear dynamical system with auxiliary variables and a separation of time-scales. By combining these ideas, we show that a network of PPCs can represent multivariate probability distributions and implement the TRP updates for the graphical model to perform probabilistic inference. Simulations with Gaussian graphical models demonstrate that the performance of the PPC-based neural network implementation of TRP updates for probabilistic inference is comparable to the direct evaluation of LBP, and thus provides a compelling substrate for general, probabilistic inference in the brain.Item Inferring Implicit Inference(2019-12-05) Vasudeva Raju, Rajkumar; Pitkow, XaqOne of the biggest challenges in theoretical neuroscience is to understand how the collective activity of neuronal populations generate behaviorally relevant computations. Repeating patterns of structure and function in the cerebral cortex suggest that the brain employs a repeating set of elementary or “canonical” computations. Neural representations, however, are distributed; so it remains an open challenge how to define these canonical computations, because the relevant operations are only indirectly related to single-neuron transformations. In this thesis, I present a theory-driven mathematical framework for inferring canonical computations from large-scale neural measurements. This work is motivated by one important class of cortical computation, probabilistic inference. In the first part of the thesis, I develop the Neural Message Passing theory, which posits that the brain has a structured internal model of the world, and that it approximates probabilistic inference on this model using nonlinear message-passing implemented by recurrently connected neural population codes. In the second part of the thesis, I present Inferring Implicit Inference, a principled framework for inferring canonical computations from large-scale neural data that is based on the theory of neural message passing. This general data analysis framework simultaneously finds (i) the neural representation of relevant variables, (ii) interactions between these latent variables that define the brain's internal model of the world, and (iii) canonical message-functions that specify the implicit computations. As a concrete demonstration of this framework, I analyze artificial neural recordings generated by a model brain that implicitly implements advanced mean-field inference. Given external inputs and noisy neural activity from the model brain, I successfully estimate the latent dynamics and canonical parameters that explain the simulated measurements. Analysis of these models reveal certain features of experiment design required to successfully extract canonical computations from neural data. In this first example application, I used a simple polynomial basis to characterize the latent canonical transformations. While this construction matched the true model, it is unlikely to capture a real brain's nonlinearities efficiently. To address this, I develop a general, flexible variant of the framework based on Graph Neural Networks, to infer approximate inferences with known neural embedding. Finally, I develop a computational pipeline to analyze large-scale recordings from the mouse visual cortex generated in response to naturalistic stimuli designed to highlight the influence of lateral connectivity. The first practical application of this framework did not reveal any compelling influences of lateral connectivity. However, these preliminary results provide valuable insights about which assumptions in our underlying models and which aspects of experiment design should be refined to reveal canonical properties of the brain's distributed nonlinear computations.Item Influence of sensory modality and control dynamics on human path integration(eLife Sciences Publications Ltd., 2022) Stavropoulos, Akis; Lakshminarasimhan, Kaushik J; Laurens, Jean; Pitkow, Xaq; Angelaki, DoraPath integration is a sensorimotor computation that can be used to infer latent dynamical states by integrating self-motion cues. We studied the influence of sensory observation (visual/vestibular) and latent control dynamics (velocity/acceleration) on human path integration using a novel motion-cueing algorithm. Sensory modality and control dynamics were both varied randomly across trials, as participants controlled a joystick to steer to a memorized target location in virtual reality. Visual and vestibular steering cues allowed comparable accuracies only when participants controlled their acceleration, suggesting that vestibular signals, on their own, fail to support accurate path integration in the absence of sustained acceleration. Nevertheless, performance in all conditions reflected a failure to fully adapt to changes in the underlying control dynamics, a result that was well explained by a bias in the dynamics estimation. This work demonstrates how an incorrect internal model of control dynamics affects navigation in volatile environments in spite of continuous sensory feedback.Item Learning precise spatiotemporal sequences via biophysically realistic neural circuits with modular structure(2020-05-27) Cone, Ian; Shouval, Harel; Pitkow, XaqThe ability to express and learn temporal sequences is an essential part of neural learning and memory. Learned temporal sequences are expressed in multiple brain regions and as such there may be common design in the circuits that mediate it. This thesis proposes a substrate for such representations, via a biophysically realistic network model that can robustly learn and recall discrete sequences of variable order and duration. The model consists of a network of spiking leaky-integrate-and-fire model neurons placed in a modular architecture designed to resemble cortical microcolumns. Learning is performed via a learning rule with “eligibility traces”, which hold a history of synaptic activity before being converted into changes in synaptic strength upon neuromodulator activation. Before training, the network responds to incoming stimuli, and contains no memory of any particular sequence. After training, presentation of only the first element in that sequence is sufficient for the network to recall an entire learned representation of the sequence. An extended version of the model also demonstrates the ability to successfully learn and recall non-Markovian sequences. This model provides a possible framework for biologically realistic sequence learning and memory, and is in agreement with recent experimental results, which have shown sequence dependent plasticity in sensory cortex.Item NEURD: automated proofreading and feature extraction for connectomics(2023-04-21) Celii, Brendan; Pitkow, Xaq; Reimer, JacobWe are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.Item NEURD: automated proofreading and feature extraction for connectomics(2024-03-28) Celii, Brendan; Reimer, Jacob; Pitkow, XaqWe are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution. Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-annotated graph representation. With these feature-rich graphs, we implement workflows for tasks unable to be performed manually at these scales, such as state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.Item Nonlinear neural codes(2015-12-03) Yang, Qianli; Pitkow, Xaq; Aazhang, Behnaam; Johnson, Don H.; Baraniuk, Richard G.; Tolias, AndreasMost natural task-relevant variables are encoded in the early sensory cortex in a form that can only be decoded nonlinearly. Yet despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the most relevant existing quantitative model of nonlinear codes is inconsistent with known architectural features of the brain. In particular, for large population sizes, such a code would contain more information than its sensory inputs, in violation of the data processing inequality. In this model, the noise correlation structures provide the population with an information content that scales with the size of the cortical population. This correlation structure could not arise in cortical populations that are much larger than their sensory input populations. Here we provide a better theory of nonlinear population codes that obeys the data processing inequality by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is limited by correlated noise or by downstream suboptimality. Finally, we discuss simple sensory tasks likely to require approximately quadratic decoding, to which our theory applies.Item Population coding of strategic variables during foraging in freely moving macaques(Springer Nature, 2024) Shahidi, Neda; Franch, Melissa; Parajuli, Arun; Schrater, Paul; Wright, Anthony; Pitkow, Xaq; Dragoi, ValentinUntil now, it has been difficult to examine the neural bases of foraging in naturalistic environments because previous approaches have relied on restrained animals performing trial-based foraging tasks. Here we allowed unrestrained monkeys to freely interact with concurrent reward options while we wirelessly recorded population activity in the dorsolateral prefrontal cortex. The animals decided when and where to forage based on whether their prediction of reward was fulfilled or violated. This prediction was not solely based on a history of reward delivery, but also on the understanding that waiting longer improves the chance of reward. The task variables were continuously represented in a subspace of the high-dimensional population activity, and this compressed representation predicted the animal’s subsequent choices better than the true task variables and as well as the raw neural activity. Our results indicate that monkeys’ foraging strategies are based on a cortical model of reward dynamics as animals freely explore their environment.Item Revealing nonlinear neural decoding by analyzing choices(Springer Nature, 2021) Yang, Qianli; Walker, Edgar; Cotton, R. James; Tolias, Andreas S.; Pitkow, XaqSensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. The neurons that encode these relevant signals typically constitute a nonlinear population code. Here we present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information. Our theory obeys fundamental mathematical limitations on information content inherited from the sensory periphery, describing redundant codes when there are many more cortical neurons than primary sensory neurons. The theory predicts that if the brain uses its nonlinear population codes optimally, then more informative patterns should be more correlated with choices. More specifically, the theory predicts a simple, easily computed quantitative relationship between fluctuating neural activity and behavioral choices that reveals the decoding efficiency. This relationship holds for optimal feedforward networks of modest complexity, when experiments are performed under natural nuisance variation. We analyze recordings from primary visual cortex of monkeys discriminating the distribution from which oriented stimuli were drawn, and find these data are consistent with the hypothesis of near-optimal nonlinear decoding.Item Robust deep learning object recognition models rely on low frequency information in natural images(PLOS, 2023) Li, Zhe; Caro, Josue Ortega; Rusak, Evgenia; Brendel, Wieland; Bethge, Matthias; Anselmi, Fabio; Patel, Ankit B.; Tolias, Andreas S.; Pitkow, XaqMachine learning models have difficulty generalizing to data outside of the distribution they were trained on. In particular, vision models are usually vulnerable to adversarial attacks or common corruptions, to which the human visual system is robust. Recent studies have found that regularizing machine learning models to favor brain-like representations can improve model robustness, but it is unclear why. We hypothesize that the increased model robustness is partly due to the low spatial frequency preference inherited from the neural representation. We tested this simple hypothesis with several frequency-oriented analyses, including the design and use of hybrid images to probe model frequency sensitivity directly. We also examined many other publicly available robust models that were trained on adversarial images or with data augmentation, and found that all these robust models showed a greater preference to low spatial frequency information. We show that preprocessing by blurring can serve as a defense mechanism against both adversarial attacks and common corruptions, further confirming our hypothesis and demonstrating the utility of low spatial frequency information in robust object recognition.