Browsing by Author "Peterson, Larry C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346(Springer, 2018) Tada, Ryuji; Irino, Tomohisa; Ikehara, Ken; Karasuda, Akinori; Sugisaki, Saiko; Xuan, Chuang; Sagawa, Takuya; Itaki, Takuya; Kubota, Yoshimi; Lu, Song; Seki, Arisa; Murray, Richard W.; Alvarez-Zarikian, Carlos; Anderson, William T. Jr.; Bassetti, Maria-Angela; Brace, Bobbi J.; Clemens, Steven C.; Gurgel, Marcio H. da Costa; Dickens, Gerald R.; Dunlea, Ann G.; Gallagher, Stephen J.; Giosan, Liviu; Henderson, Andrew C.G.; Holbourn, Ann E.; Kinsley, Christopher W.; Lee, Gwang Soo; Lee, Kyung Eun; Lofi, Johanna; Lopes, Christina I.C.D.; Saavedra-Pellitero, Mariem; Peterson, Larry C.; Singh, Raj K.; Toucanne, Samuel; Wan, Shiming; Zheng, Hongbo; Ziegler, MartinThe Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter- to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (> 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as ~ 1.5 Ma based on the result of Ocean Drilling Program legs 127/128. Consequently, it is not certain exactly when their deposition started, whether deposition of dark and light layers was synchronous and whether they are correlatable also in the earlier part of their depositional history. The Quaternary hemipelagic sediments of the Japan Sea were drilled at seven sites during Integrated Ocean Drilling Program Expedition 346 in 2013. Alternation of dark and light layers was recovered at six sites whose water depths are > ~ 900 m, and continuous composite columns were constructed at each site. Here, we report our effort to correlate individual dark layers and estimate their ages based on a newly constructed age model at Site U1424 using the best available paleomagnetic datum and marker tephras. The age model is further tuned to LR04 δ18O curve using gamma ray attenuation density (GRA) since it reflects diatom contents that are higher during interglacial high-stands. The constructed age model for Site U1424 is projected to other sites using correlation of dark layers to form a high-resolution and high-precision paleo-observatory network that allows to reconstruct changes in material fluxes with high spatio-temporal resolutions.Item Timescale dependent sedimentary record during the past 130 kyr from a tropical mixed siliciclastic–carbonate shelf edge and slope: Ashmore Trough (southern Gulf of Papua)(Wiley, 2021) Mallarino, Gianni; Francis, Jason M.; Jorry, Stephan J.; Daniell, James J.; Droxler, André W.; Dickens, Gerald R.; Beaufort, Luc; Bentley, Samuel J.; Opdyke, Bradley N.; Peterson, Larry C.In tropical and sub-tropical mixed siliciclastic–carbonate depositional systems, fluvial input and in situ neritic carbonate interact over space and time. Despite being the subject of many studies, controls on partitioning of mixed sediments remains controversial. Mixed sedimentary records, from Ashmore Trough shelf edge and slopes (southern Gulf of Papua), are coupled with global sea-level curves and anchored to Marine Isotope Stage stratigraphy to constrain models of sediment accumulation at two different timescales for the past 130 kyr: (i) 100 kyr scale for last glacial cycle; and (ii) millennial scale for last deglaciation. During the last glacial cycle, carbonate production and accumulation were primarily controlled by sea-level fluctuations. Export of neritic carbonate to the slopes was initiated during re-flooding of previously exposed reefs and continued during Marine Isotope Stage 5e and 1 interglacial sea-level highs. Siliciclastic fluxes to the slope were controlled by interplay of sea level, shelf physiography and oceanic currents. Heterogeneous accumulation of siliciclastic mud on the slope, took place during Marine Isotope Stage 5d to Marine Isotope Stage 3 sea-level fall. Siliciclastics reached adjacent depocentres during Marine Isotope Stage 2. Coralgal reef and oolitic–skeletal sand resumed at the shelf edge during the subsequent stepwise sea-level rise of the last deglaciation. Contemporaneous, abrupt siliciclastic input from increased precipitation and fluvial discharge illustrates that climate controlled deglacial sedimentation. Siliciclastic input persisted until ca 8.5 ka. Carbonate accumulation waned at the shelf edge after ca 14 ka, whereas it increased on the slopes since ca 11.5 ka, when previously exposed reef and bank tops were re-flooded. When comparing the last sea-level cycle sedimentation patterns of the southern Gulf of Papua with other coeval mixed systems, sea level and shelf physiography emerge as primary controls on deposition at the 100 kyr scale. At the millennial scale, siliciclastic input was also controlled by climate change during the unstable atmospheric and oceanic conditions of the last deglaciation.