Browsing by Author "Peraca, Nicolas Marquez"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Observation of colossal terahertz magnetoresistance and magnetocapacitance in a perovskite manganite(Optica Publishing Group, 2023) Tay, Fuyang; Chaudhary, Swati; He, Jiaming; Peraca, Nicolas Marquez; Baydin, Andrey; Fiete, Gregory A.; Zhou, Jianshi; Kono, Junichiro; Smalley-Curl InstituteTerahertz (THz) magnetoresistance effects have been extensively investigated and have shown promising results for applications in magnetic modulations of the amplitude of THz waves. However, THz magnetocapacitance in dielectric systems, which is essential for phase modulations of THz radiation, remains largely unexplored. Here, we study the THz response of a bulk single crystal of L a 0.875 S r 0.125 M n O 3 at around its Curie temperature, observing significant magnetic-field-induced changes in the THz resistance and capacitance extracted from the optical conductivity. We discuss possible mechanisms for the observed coexistence of colossal THz magnetoresistance and magnetocapacitance in a perovskite manganite that is not multiferroic. This work enhances our understanding of colossal magnetoresistance in a complex system with THz spectroscopy and demonstrates potential use of perovskite manganites in THz technology.Item Time-domain terahertz spectroscopy in high magnetic fields(Springer Nature, 2021) Baydin, Andrey; Makihara, Takuma; Peraca, Nicolas Marquez; Kono, JunichiroThere are a variety of elementary and collective terahertz-frequency excitations in condensed matter whose magnetic field dependence contains significant insight into the states and dynamics of the electrons involved. Often, determining the frequency, temperature, and magnetic field dependence of the optical conductivity tensor, especially in high magnetic fields, can clarify the microscopic physics behind complex many-body behaviors of solids. While there are advanced terahertz spectroscopy techniques as well as high magnetic field generation techniques available, a combination of the two has only been realized relatively recently. Here, we review the current state of terahertz time-domain spectroscopy (THz-TDS) experiments in high magnetic fields. We start with an overview of time-domain terahertz detection schemes with a special focus on how they have been incorporated into optically accessible high-field magnets. Advantages and disadvantages of different types of magnets in performing THz-TDS experiments are also discussed. Finally, we highlight some of the new fascinating physical phenomena that have been revealed by THz-TDS in high magnetic fields.