Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pediredla, Adithya Kumar"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Deep imaging in scattering media with selective plane illumination microscopy
    (SPIE, 2016) Pediredla, Adithya Kumar; Zhang, Shizheng; Avants, Ben; Ye, Fan; Nagayama, Shin; Chen, Ziying; Kemere, Caleb; Robinson, Jacob T.; Veeraraghavan, Ashok; Bioengineering; Electrical and Computer Engineering; Computer Science
    In most biological tissues, light scattering due to small differences in refractive index limits the depth of optical imaging systems. Two-photon microscopy (2PM), which significantly reduces the scattering of the excitation light, has emerged as the most common method to image deep within scattering biological tissue. This technique, however, requires high-power pulsed lasers that are both expensive and difficult to integrate into compact portable systems. Using a combination of theoretical and experimental techniques, we show that if the excitation path length can be minimized, selective plane illumination microscopy (SPIM) can image nearly as deep as 2PM without the need for a high-powered pulsed laser. Compared to other single-photon imaging techniques like epifluorescence and confocal microscopy, SPIM can image more than twice as deep in scattering media (∼10 times the mean scattering length). These results suggest that SPIM has the potential to provide deep imaging in scattering media in situations in which 2PM systems would be too large or costly.
  • Loading...
    Thumbnail Image
    Item
    Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner
    (IEEE, 2017) Pediredla, Adithya Kumar; Buttafava, Mauro; Tosi, Alberto; Cossairt, Oliver; Veeraraghavan, Ashok
    Can we reconstruct the entire internal shape of a room if all we can directly observe is a small portion of one internal wall, presumably through a window in the room? While conventional wisdom may indicate that this is not possible, motivated by recent work on `looking around corners', we show that one can exploit light echoes to reconstruct the internal shape of hidden rooms. Existing techniques for looking around the corner using transient images model the hidden volume using voxels and try to explain the captured transient response as the sum of the transient responses obtained from individual voxels. Such a technique inherently suffers from challenges with regards to low signal to background ratios (SBR) and has difficulty scaling to larger volumes. In contrast, in this paper, we argue for using a plane-based model for the hidden surfaces. We demonstrate that such a plane-based model results in much higher SBR while simultaneously being amenable to larger spatial scales. We build an experimental prototype composed of a pulsed laser source and a single-photon avalanche detector (SPAD) that can achieve a time resolution of about 30ps and demonstrate high-fidelity reconstructions both of individual planes in a hidden volume and for reconstructing entire polygonal rooms composed of multiple planar walls.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892