Browsing by Author "Patel, Ankit B."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item A novel automated junctional ectopic tachycardia detection tool for children with congenital heart disease(Elsevier, 2022) Waugh, Jamie L. S.; Patel, Raajen; Ju, Yilong; Patel, Ankit B.; Rusin, Craig G.; Jain, Parag N.Background Junctional ectopic tachycardia (JET) is a prevalent life-threatening arrhythmia in children with congenital heart disease (CHD), with marked resemblance to normal sinus rhythm (NSR) often leading to delay in diagnosis. Objective To develop a novel automated arrhythmia detection tool to identify JET. Methods A single-center retrospective cohort study of children with CHD was performed. Electrocardiographic (ECG) data produced by bedside monitors is captured automatically by the Sickbay platform. Based on the detection of R and P wave peaks, 2 interpretable ECG features are calculated: P prominence median and PR interval interquartile range (IQR). These features are used as input to a simple logistic regression classification model built to distinguish JET from NSR. Results This study analyzed a total of 64.5 physician-labeled hours consisting of 509,833 cardiac cycles (R-R intervals), from 40 patients with CHD. The extracted P prominence median feature is much smaller in JET compared to NSR, whereas the PR interval IQR feature is larger in JET compared to NSR. The area under the receiver operating characteristic curve for the unseen patient test cohort was 93%. Selecting a threshold of 0.73 results in a true-positive rate of 90% and a false-positive rate of 17%. Conclusion This novel arrhythmia detection tool identifies JET, using 2 distinctive features of JET in ECG—the loss of a normal P wave and PR relationship—allowing for early detection and timely intervention.Item A Probabilistic Framework for Deep Learning(Neural Information Processing Systems Foundation, Inc., 2016) Patel, Ankit B.; Nguyen, Tan; Baraniuk, Richard G.We develop a probabilistic framework for deep learning based on the Deep Rendering Mixture Model (DRMM), a new generative probabilistic model that explicitly capture variations in data due to latent task nuisance variables. We demonstrate that max-sum inference in the DRMM yields an algorithm that exactly reproduces the operations in deep convolutional neural networks (DCNs), providing a first principles derivation. Our framework provides new insights into the successes and shortcomings of DCNs as well as a principled route to their improvement. DRMM training via the Expectation-Maximization (EM) algorithm is a powerful alternative to DCN back-propagation, and initial training results are promising. Classification based on the DRMM and other variants outperforms DCNs in supervised digit classification, training 2-3x faster while achieving similar accuracy. Moreover, the DRMM is applicable to semi-supervised and unsupervised learning tasks, achieving results that are state-of-the-art in several categories on the MNIST benchmark and comparable to state of the art on the CIFAR10 benchmark.Item Automated compilation of probabilistic task description into executable neural network specification(2020-11-24) Patel, Ankit B.; Baraniuk, Richard G.; Rice University; United States Patent and Trademark OfficeA mechanism for compiling a generative description of an inference task into a neural network. First, an arbitrary generative probabilistic model from the exponential family is specified (or received). The model characterizes a conditional probability distribution for measurement data given a set of latent variables. A factor graph is generated for the generative probabilistic model. Each factor node of the factor graph is expanded into a corresponding sequence of arithmetic operations, based on a specified inference task and a kind of message passing algorithm. The factor graph and the sequences of arithmetic operations specify the structure of a neural network for performance of the inference task. A learning algorithm is executed, to determine values of parameters of the neural network. The neural network is then ready for performing inference on operational measurements.Item Decoding Depression Severity From Intracranial Neural Activity(Elsevier, 2023) Xiao, Jiayang; Provenza, Nicole R.; Asfouri, Joseph; Myers, John; Mathura, Raissa K.; Metzger, Brian; Adkinson, Joshua A.; Allawala, Anusha B.; Pirtle, Victoria; Oswalt, Denise; Shofty, Ben; Robinson, Meghan E.; Mathew, Sanjay J.; Goodman, Wayne K.; Pouratian, Nader; Schrater, Paul R.; Patel, Ankit B.; Tolias, Andreas S.; Bijanki, Kelly R.; Pitkow, Xaq; Sheth, Sameer A.Background Disorders of mood and cognition are prevalent, disabling, and notoriously difficult to treat. Fueling this challenge in treatment is a significant gap in our understanding of their neurophysiological basis. Methods We recorded high-density neural activity from intracranial electrodes implanted in depression-relevant prefrontal cortical regions in 3 human subjects with severe depression. Neural recordings were labeled with depression severity scores across a wide dynamic range using an adaptive assessment that allowed sampling with a temporal frequency greater than that possible with typical rating scales. We modeled these data using regularized regression techniques with region selection to decode depression severity from the prefrontal recordings. Results Across prefrontal regions, we found that reduced depression severity is associated with decreased low-frequency neural activity and increased high-frequency activity. When constraining our model to decode using a single region, spectral changes in the anterior cingulate cortex best predicted depression severity in all 3 subjects. Relaxing this constraint revealed unique, individual-specific sets of spatiospectral features predictive of symptom severity, reflecting the heterogeneous nature of depression. Conclusions The ability to decode depression severity from neural activity increases our fundamental understanding of how depression manifests in the human brain and provides a target neural signature for personalized neuromodulation therapies.Item Domain-driven models yield better predictions at lower cost than reservoir computers in Lorenz systems(The Royal Society, 2021) Pyle, Ryan; Jovanovic, Nikola; Subramanian, Devika; Palem, Krishna V.; Patel, Ankit B.Recent advances in computing algorithms and hardware have rekindled interest in developing high-accuracy, low-cost surrogate models for simulating physical systems. The idea is to replace expensive numerical integration of complex coupled partial differential equations at fine time scales performed on supercomputers, with machine-learned surrogates that efficiently and accurately forecast future system states using data sampled from the underlying system. One particularly popular technique being explored within the weather and climate modelling community is the echo state network (ESN), an attractive alternative to other well-known deep learning architectures. Using the classical Lorenz 63 system, and the three tier multi-scale Lorenz 96 system (Thornes T, Duben P, Palmer T. 2017 Q. J. R. Meteorol. Soc.143, 897–908. (doi:10.1002/qj.2974)) as benchmarks, we realize that previously studied state-of-the-art ESNs operate in two distinct regimes, corresponding to low and high spectral radius (LSR/HSR) for the sparse, randomly generated, reservoir recurrence matrix. Using knowledge of the mathematical structure of the Lorenz systems along with systematic ablation and hyperparameter sensitivity analyses, we show that state-of-the-art LSR-ESNs reduce to a polynomial regression model which we call Domain-Driven Regularized Regression (D2R2). Interestingly, D2R2 is a generalization of the well-known SINDy algorithm (Brunton SL, Proctor JL, Kutz JN. 2016 Proc. Natl Acad. Sci. USA113, 3932–3937. (doi:10.1073/pnas.1517384113)). We also show experimentally that LSR-ESNs (Chattopadhyay A, Hassanzadeh P, Subramanian D. 2019 (http://arxiv.org/abs/1906.08829)) outperform HSR ESNs (Pathak J, Hunt B, Girvan M, Lu Z, Ott E. 2018 Phys. Rev. Lett.120, 024102. (doi:10.1103/PhysRevLett.120.024102)) while D2R2 dominates both approaches. A significant goal in constructing surrogates is to cope with barriers to scaling in weather prediction and simulation of dynamical systems that are imposed by time and energy consumption in supercomputers. Inexact computing has emerged as a novel approach to helping with scaling. In this paper, we evaluate the performance of three models (LSR-ESN, HSR-ESN and D2R2) by varying the precision or word size of the computation as our inexactness-controlling parameter. For precisions of 64, 32 and 16 bits, we show that, surprisingly, the least expensive D2R2 method yields the most robust results and the greatest savings compared to ESNs. Specifically, D2R2 achieves 68 × in computational savings, with an additional 2 × if precision reductions are also employed, outperforming ESN variants by a large margin.This article is part of the theme issue ‘Machine learning for weather and climate modelling’.Item Privacy-Preserving Social Ambiance Measure From Free-Living Speech Associates With Chronic Depressive and Psychotic Disorders(Frontiers, 2021) Chen, Wenwan; Sabharwal, Ashutosh; Taylor, Erica; Patel, Ankit B.; Moukaddam, NidalA social interaction consists of contributions by the individual, the environment and the interaction between the two. Ideally, to enable effective assessment and interventions for social isolation, an issue inherent to depressive and psychotic illnesses, the isolation must be identified in real-time and at an individual level. However, research addressing sociability deficits is largely focused on determining loneliness, rather than isolation, and lacks focus on the richness of the social environment the individual revolves in. In this paper, We describe the development of an automated, objective and privacy-preserving Social Ambiance Measure (SAM) that converts unconstrained audio recordings collected from wrist-worn audio-bands into four levels, ranging from none to active. The ambiance levels are based on the number of simultaneous speakers, which is a proxy for overall social activity in the environment. Results show that social ambiance patterns and time spent at each ambiance level differed between participants with depressive or psychotic disorders and healthy controls. Individuals with depression/psychosis spent less time in diverse environments and less time in moderate/active ambiance levels. Moreover, social ambiance patterns are found associated with the severity of self-reported depression, anxiety symptoms and personality traits. The results in this paper suggest that objectively measured social ambiance can be used as a marker of sociability, and holds potential to be leveraged to better understand social isolation and develop effective interventions for sociability challenges, thus improving mental health outcomes.Item Quantification of Myxococcus xanthus Aggregation and Rippling Behaviors: Deep-Learning Transformation of Phase-Contrast into Fluorescence Microscopy Images(MDPI, 2021) Zhang, Jiangguo; Comstock, Jessica A.; Cotter, Christopher R.; Murphy, Patrick A.; Nie, Weili; Welch, Roy D.; Patel, Ankit B.; Igoshin, Oleg A.Myxococcus xanthus bacteria are a model system for understanding pattern formation and collective cell behaviors. When starving, cells aggregate into fruiting bodies to form metabolically inert spores. During predation, cells self-organize into traveling cell-density waves termed ripples. Both phase-contrast and fluorescence microscopy are used to observe these patterns but each has its limitations. Phase-contrast images have higher contrast, but the resulting image intensities lose their correlation with cell density. The intensities of fluorescence microscopy images, on the other hand, are well-correlated with cell density, enabling better segmentation of aggregates and better visualization of streaming patterns in between aggregates; however, fluorescence microscopy requires the engineering of cells to express fluorescent proteins and can be phototoxic to cells. To combine the advantages of both imaging methodologies, we develop a generative adversarial network that converts phase-contrast into synthesized fluorescent images. By including an additional histogram-equalized output to the state-of-the-art pix2pixHD algorithm, our model generates accurate images of aggregates and streams, enabling the estimation of aggregate positions and sizes, but with small shifts of their boundaries. Further training on ripple patterns enables accurate estimation of the rippling wavelength. Our methods are thus applicable for many other phenotypic behaviors and pattern formation studies.Item Retinomorphic Event-Driven Representations for Video Tasks(2017-11-30) Liu, Wanjia; Shrivastava, Anshumali; Patel, Ankit B.Deep neural networks have revolutionized static image understanding through their amazing performance in tasks such as classification, segmentation and style transfer. However, current architectures have yet to find as much success in video tasks mainly due to increased data dimension, higher information throughput and a sub-optimal frame-driven representation. Inspired by the early vision systems of mammals and insects, we propose an event-driven input representation (EDR) that models several major properties of early retinal circuits: 1. Output scales logrithmically with input intensity, 2. ON/OFF pathways for differentiating event types, 3. Relative change detection and event detection via thresholding. With UCF-101 video action recognition experiments, we show that neural network utilizing EDR as input performs near state-of-the-art in accuracy while achieving a 1,500x speedup in input representation processing (9K frames/sec), as compared to optical flow. EDR's fast processing speed enables real-time inference/learning in time sensitive video applications such as reinforcement learning. In this vein, we use EDR to demonstrate performance improvements over state-of-the-art reinforcement learning algorithms for Atari games, something that has not been possible with optical flow.Item Robust deep learning object recognition models rely on low frequency information in natural images(PLOS, 2023) Li, Zhe; Caro, Josue Ortega; Rusak, Evgenia; Brendel, Wieland; Bethge, Matthias; Anselmi, Fabio; Patel, Ankit B.; Tolias, Andreas S.; Pitkow, XaqMachine learning models have difficulty generalizing to data outside of the distribution they were trained on. In particular, vision models are usually vulnerable to adversarial attacks or common corruptions, to which the human visual system is robust. Recent studies have found that regularizing machine learning models to favor brain-like representations can improve model robustness, but it is unclear why. We hypothesize that the increased model robustness is partly due to the low spatial frequency preference inherited from the neural representation. We tested this simple hypothesis with several frequency-oriented analyses, including the design and use of hybrid images to probe model frequency sensitivity directly. We also examined many other publicly available robust models that were trained on adversarial images or with data augmentation, and found that all these robust models showed a greater preference to low spatial frequency information. We show that preprocessing by blurring can serve as a defense mechanism against both adversarial attacks and common corruptions, further confirming our hypothesis and demonstrating the utility of low spatial frequency information in robust object recognition.Item Understanding Robustness and Generalization of Artificial Neural Networks Through Fourier Masks(Frontiers Media S.A., 2022) Karantzas, Nikos; Besier, Emma; Ortega Caro, Josue; Pitkow, Xaq; Tolias, Andreas S.; Patel, Ankit B.; Anselmi, FabioDespite the enormous success of artificial neural networks (ANNs) in many disciplines, the characterization of their computations and the origin of key properties such as generalization and robustness remain open questions. Recent literature suggests that robust networks with good generalization properties tend to be biased toward processing low frequencies in images. To explore the frequency bias hypothesis further, we develop an algorithm that allows us to learn modulatory masks highlighting the essential input frequencies needed for preserving a trained network's performance. We achieve this by imposing invariance in the loss with respect to such modulations in the input frequencies. We first use our method to test the low-frequency preference hypothesis of adversarially trained or data-augmented networks. Our results suggest that adversarially robust networks indeed exhibit a low-frequency bias but we find this bias is also dependent on directions in frequency space. However, this is not necessarily true for other types of data augmentation. Our results also indicate that the essential frequencies in question are effectively the ones used to achieve generalization in the first place. Surprisingly, images seen through these modulatory masks are not recognizable and resemble texture-like patterns.