Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Parvez Khan, Mohammad Shahriar"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Heterogeneous Resource Allocation in Datacenters
    (2020-04-24) Parvez Khan, Mohammad Shahriar; Varman, Peter J
    Virtualized datacenters are considerably cost-effective and convenient to their clients who routinely deploy clusters of communicating Virtual Machines (VMs) on physical infrastructures to create a distributed ensemble of servers for Web applications. These applications require multiple resources such as compute, memory, storage and network bandwidth for execution, motivating the need for fair allocation policies. Here, we present a new model for allocating multiple resources among clients, and our results show that we can obtain significantly better utilization than existing approaches, while provably maintaining good fairness properties like Envy Freedom and Sharing Incentive. We also look at datacenter optimization from an opposite standpoint, i.e., VM placement. It is necessary to place a high number of virtual servers per physical host to maximize the benefits of a shared infrastructure. We present a framework to automate the placement of VMs in several scenarios alongside the corresponding ILP optimization models and numerical results.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892