Browsing by Author "Park, Junghwan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Derivatives of Genus One and Three Knots(2017-04-20) Park, Junghwan; Harvey, ShellyA derivative L of an algebraically slice knot K is an oriented link disjointly embedded in a Seifert surface of K such that its homology class forms a basis for a metabolizer H of K. For genus one knots, we produce a new example of a smoothly slice knot with non-slice derivatives. Such examples were first discovered by Cochran and Davis. In order to do so, we define an operation on a homology B^4 that we call an n-twist annulus modification. Further, we give a new construction of smoothly slice knots and exotically slice knots via n-twist annulus modifications. For genus three knots, we show that the set S_{K,H} ={ mu_L(123) - mu_L'(123) | L,L' are derivatives associated with a metabolizer H} contains n · Z, where n is an integer determined by a Seifert form of K and a metabolizer H. As a corollary, we show that it is possible to realize any integer as the Milnor's triple linking number of a derivative of the unknot on a fixed Seifert surface and with a fixed metabolizer.