Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Paredes Toro, Roger"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Principled Uncertainty Quantification for Resilient Infrastructure Management
    (2022-08-15) Paredes Toro, Roger; Dueñas-Osorio, Leonardo
    Uncertainty Quantification (UQ) is the prevalent approach to assess urban infrastructure safety and support decision making, as it accounts for randomness and the lack of perfect information about infrastructure components and the environment. This is especially relevant now that urban infrastructure services are becoming more interdependent and automation is becoming integral to their management. Unfortunately, the task of accurate and efficient UQ is believed to be computationally infeasible in general. Understandably, the state-of-the-practice consists of heuristic UQ methods that make computations affordable; however, they give no assurance of correctness or quality of reliability estimates. Thus, the trust in heuristic analyses to reveal and quantify key vulnerabilities in urban infrastructure is limited, especially as the failure modes of infrastructure are poorly understood. For example, system-level collapse can be the result of interdependencies or cascading failures, as opposed to the more traditional view that focused on the integrity of assets and facilities without quantitative system-level effects. This thesis develops and advances UQ methods that enable evidence-based decision making, i.e., for fixed input data and accepted physical models, non-expert users can independently and confidently obtain reliability estimates that are guaranteed to be correct. Thus, this thesis refers to this family of methods as principled UQ methods. While the bulk of the literature devotes attention to the affordability of computations, at the risk of losing correctness, this work focuses on the quality of computations in general applications. We do not abandon the emphasis on speed of computation, as we pay especial attention to the speed of computations in real-world instances. In the process, we stumble upon a surprising finding: principled UQ methods can vastly outperform state-of-the-art heuristic UQ methods in several case studies. We show evidence of this finding by replicating reliability studies on urban infrastructure and fully eliminating the uncertainty brought about by recent heuristic UQ proposals. Moreover, the generality of the techniques we develop and advance allow for resilience quantification; thus, we unify the insights and challenges in both reliability engineering and resilience engineering, especially rare event simulation and estimation, in the context of highly resilient urban infrastructure. All developments in this thesis are exemplified with applications to both synthetic systems and engineered infrastructure systems.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892