Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Papastathopoulos-Katsaros, Athanasios"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cluster-based methods for strongly-correlated systems
    (2023-12-01) Papastathopoulos-Katsaros, Athanasios; Scuseria, Gustavo
    We introduce three novel cluster-based methods to describe the ground states of strongly-correlated systems such as iron-sulfur clusters, conjugated hydrocarbons, and superconductors. These methods utilize a spatial tiling of sites as their core principle. The first approach employs unrestricted cluster mean-field theory (UcMF), with clusters of Sz eigenstates. Correlations between tiles are accounted for using perturbation theory (cPT2) and coupled-cluster (cCCSD). The second approach, generalized cluster mean-field theory (GcMF), allows Sz to break in each cluster, partially including missing intercluster correlations. A projection scheme, Sz GcMF, restores global Sz symmetry for further improvement. The third approach, a non-orthogonal configuration interaction-based theory (LC-cMF) which is still in development, is based on linear combinations of different system tilings. Various criteria, such as translational symmetry and spatial proximity, guide the selection of these tilings. Benchmark calculations on one- and two-dimensional spin models show the promise of these methods. GcMF and Sz GcMF provide a qualitative improvement over UcMF, while cPT2, cCCSD, and LC-cMF can quantitatively capture inter-cluster interactions in some systems. Overall, cluster-based methods offer valuable tools for investigating strongly-correlated spin systems with potential for further advancement.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892