Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pai, Vijay Sadananda"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Exploiting instruction-level parallelism for memory system performance
    (2000) Pai, Vijay Sadananda; Adve, Sarita V.
    Current microprocessors improve performance by exploiting instruction-level parallelism (ILP). ILP hardware techniques such as multiple instruction issue, out-of-order (dynamic) issue, and non-blocking reads can accelerate both computation and data memory references. Since computation speeds have been improving faster than data memory access times, memory system performance is quickly becoming the primary obstacle to achieving high performance. This dissertation focuses on exploiting ILP techniques to improve memory system performance. This dissertation includes both an analysis of ILP memory system performance and optimizations developed using the insights of this analysis. First, this dissertation shows that ILP hardware techniques, used in isolation, are often unsuccessful at improving memory system performance because they fail to extract parallelism among data reads that miss in the processor's caches. The previously-studied latency-tolerance technique of software prefetching provides some improvement by initiating data read misses earlier, but also suffers from limitations caused by exposed startup latencies, excessive fetch-ahead distances, and references that are hard to prefetch. This dissertation then uses the above insights to develop compile-time software transformations that improve memory system parallelism and performance. These transformations improve the effectiveness of ILP hardware, reducing exposed latency by over 80% for a latency-detection microbenchmark and reducing execution time an average of 25% across 14 multiprocessor and uniprocessor cases studied in simulation and an average of 21% across 12 cases on a real system. These transformations also combine with software prefetching to address key limitations in either latency-tolerance technique alone, providing the best performance when both techniques are combined for most of the uniprocessor and multiprocessor codes that we study. Finally, this dissertation also explores appropriate evaluation methodologies for ILP shared-memory multiprocessors. Memory system parallelism is a key feature determining ILP performance, but is neglected in previous-generation fast simulators. This dissertation highlights the errors possible in such simulators and presents new evaluation methodologies to improve the tradeoff between accuracy and evaluation speed.
  • Loading...
    Thumbnail Image
    Item
    The impact of instruction-level parallelism on multiprocessor performance and simulation methodology
    (1997) Pai, Vijay Sadananda; Adve, Sarita V.
    Current microprocessors exploit high levels of instruction-level parallelism (ILP). This thesis presents the first detailed analysis of the impact of such processors on shared-memory multiprocessors. We find that ILP techniques substantially reduce CPU time in multiprocessors, but are less effective in reducing memory stall time for our applications. Consequently, despite the latency-tolerating techniques incorporated in ILP processors, memory stall time becomes a larger component of execution time and parallel efficiencies are generally poorer in our ILP-based multiprocessor than in an otherwise equivalent previous-generation multiprocessor. We identify clustering independent read misses together in the processor instruction window as a key optimization to exploit the ILP features of current processors. We also use the above analysis to examine the validity of direct-execution simulators with previous-generation processor models to approximate ILP-based multiprocessors. We find that, with appropriate approximations, such simulators can reasonably characterize the behavior of applications with poor overlap of read misses. However, they can be highly inaccurate for applications with high overlap of read misses.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892