Browsing by Author "Ott, James R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The Arthropod Associates of 155 North American Cynipid Oak Galls(Academia Sinica, 2022) Ward, Anna K.G.; Busbee, Robert W.; Chen, Rachel A.; Davis, Charles K.; Driscoe, Amanda L.; Egan, Scott P.; Goldberg, Bailey A.R.; Hood, Glen Ray; Jones, Dylan G.; Kranz, Adam J.; Meadely-Dunphy, Shannon A.; Milks, Alyson K.; Ott, James R.; Prior, Kirsten M.; Sheikh, Sofia I.; Shzu, Shih-An; Weinersmith, Kelly L.; Zhang, Linyi; Zhang, Y. Miles; Forbes, Andrew A.The identities of most arthropod associates of cynipid-induced oak galls in the western Palearctic are generally known. However, a comprehensive accounting of associates has been performed for only a small number of the galls induced by the estimated 700 species of cynipid gall wasps in the Nearctic. This gap in knowledge stymies many potential studies of diversity, coevolution, and community ecology, for which oak gall systems are otherwise ideal models. We report rearing records of insects and other arthropods from more than 527,306 individual galls representing 201 different oak gall types collected from 32 oak tree species in North America. Of the 201 gall types collected, 155 produced one or more arthropods. A total of 151,075 arthropods were found in association with these 155 gall types, and of these 61,044 (40.4%) were gall wasps while 90,031 (59.6%) were other arthropods. We identified all arthropods to superfamily, family, or, where possible, to genus. We provide raw numbers and summaries of collections, alongside notes on natural history, ecology, and previously published associations for each taxon. For eight common gall-associated genera (Synergus, Ceroptres, Euceroptres, Ormyrus, Torymus, Eurytoma, Sycophila, and Euderus), we also connect rearing records to gall wasp phylogeny, geography, and ecology - including host tree and gall location (host organ), and their co-occurrence with other insect genera. Though the diversity of gall wasps and the large size of these communities is such that many Nearctic oak gall-associated insects still remain undescribed, this large collection and identification effort should facilitate the testing of new and varied ecological and evolutionary hypotheses in Nearctic oak galls.Item Chromosomes of Belonocnema treatae Mayr, 1881 (Hymenoptera, Cynipidae)(Pensoft, 2015) Gokhman, Vladimir E.; Ott, James R.; Egan, Scott P.Chromosomes of the asexual and sexual generation of the gall wasp Belonocnema treatae Mayr, 1881 (Cynipidae) were analyzed. Females of both generations have 2n = 20, whereas males of the sexual generation have n = 10. Cyclical deuterotoky is therefore confirmed in this species. All chromosomes are acrocentric and form a continuous gradation in size. This karyotype structure is probably ancestral for many gall wasps and perhaps for the family Cynipidae in general. Chromosome no. 7 carries a characteristic achromatic gap that appears to represent a nucleolus organizing region.Item Diversity and distribution ofᅠWolbachiaᅠin relation to geography, host plant affiliation and life cycle of a heterogonic gall wasp(Springer Nature, 2018) Schuler, Hannes; Egan, Scott P.; Hood, Glen Ray; Busbee, Robert W.; Driscoe, Amanda L.; Ott, James R.Background: The maternally inherited endosymbiont Wolbachia is widespread in arthropods and nematodes and can play an important role in the ecology and evolution of its host through reproductive manipulation. Here, we survey Wolbachia in Belonocnema treatae, a widely distributed North American cynipid gall forming wasp that exhibits regional host specialization on three species of oaks and alternation of sexually and asexually reproducing generations. We investigated whether patterns of Wolbachia infection and diversity in B. treatae are associated with the insect’s geographic distribution, host plant association, life cycle, and mitochondrial evolutionary history. Results: Screening of 463 individuals from 23 populations including sexual and asexual generations from all three host plants across the southern U.S. showed an average infection rate of 56% with three common Wolbachia strains: wTre1–3 and an additional rare variant wTre4. Phylogenetic analysis based on wsp showed that these strains are unrelated and likely independently inherited. We found no difference in Wolbachia infection frequency among host plant associated populations or between the asexual and sexual generations, or between males and females of the sexual generation. Partially incomplete Wolbachia transmission rates might explain the occurrence of uninfected individuals. A parallel analysis of the mitochondrial cytochrome oxidase I gene in B. treatae showed high mtDNA haplotype diversity in both infected and uninfected populations suggesting an ancestral infection by Wolbachia as well as a clear split between eastern and western B. treatae mtDNA clades with a sequence divergence of > 6%. The strain wTre1 was present almost exclusively in the western clade while wTre2 and wTre3 occur almost exclusively in eastern populations. In contrast, the same strains co-occur as double-infections in Georgia and triple-infections in two populations in central Florida. Conclusions: The diversity of Wolbachia across geographically and genetically distinct populations of B. treatae and the co-occurrence of the same strains within three populations highlights the complex infection dynamics in this system. Moreover, the association of distinct Wolbachia strains with mitochondrial haplotypes of its host in populations infected by different Wolbachia strains suggests a potential role of the endosymbiont in reproductive isolation in B. treatae.Item Speciation in Nearctic oak gall wasps is frequently correlated with changes in host plant, host organ, or both(Wiley, 2022) Ward, Anna K. G.; Bagley, Robin K.; Egan, Scott P.; Hood, Glen Ray; Ott, James R.; Prior, Kirsten M.; Sheikh, Sofia I.; Weinersmith, Kelly L.; Zhang, Linyi; Zhang, Y. Miles; Forbes, Andrew A.Quantifying the frequency of shifts to new host plants within diverse clades of specialist herbivorous insects is critically important to understand whether and how host shifts contribute to the origin of species. Oak gall wasps (Hymenoptera: Cynipidae: Cynipini) comprise a tribe of ∼1000 species of phytophagous insects that induce gall formation on various organs of trees in the family Fagacae—primarily the oaks (genus Quercus; ∼435 sp.). The association of oak gall wasps with oaks is ancient (∼50 my), and most oak species are galled by one or more gall wasp species. Despite the diversity of both gall wasp species and their plant associations, previous phylogenetic work has not identified the strong signal of host plant shifting among oak gall wasps that has been found in other phytophagous insect systems. However, most emphasis has been on the Western Palearctic and not the Nearctic where both oaks and oak gall wasps are considerably more species rich. We collected 86 species of Nearctic oak gall wasps from most of the major clades of Nearctic oaks and sequenced >1000 Ultraconserved Elements (UCEs) and flanking sequences to infer wasp phylogenies. We assessed the relationships of Nearctic gall wasps to one another and, by leveraging previously published UCE data, to the Palearctic fauna. We then used phylogenies to infer historical patterns of shifts among host tree species and tree organs. Our results indicate that oak gall wasps have moved between the Palearctic and Nearctic at least four times, that some Palearctic wasp clades have their proximate origin in the Nearctic, and that gall wasps have shifted within and between oak tree sections, subsections, and organs considerably more often than previous data have suggested. Given that host shifts have been demonstrated to drive reproductive isolation between host-associated populations in other phytophagous insects, our analyses of Nearctic gall wasps suggest that host shifts are key drivers of speciation in this clade, especially in hotspots of oak diversity. Although formal assessment of this hypothesis requires further study, two putatively oligophagous gall wasp species in our dataset show signals of host-associated genetic differentiation unconfounded by geographic distance, suggestive of barriers to gene flow associated with the use of alternative host plants.