Browsing by Author "Onuchic, José N."
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics(National Academy of Sciences, 2022) Karmi, Ola; Marjault, Henri-Baptiste; Bai, Fang; Roy, Susmita; Sohn, Yang-Sung; Yahana, Merav Darash; Morcos, Faruck; Ioannidis, Konstantinos; Nahmias, Yaakov; Jennings, Patricia A.; Mittler, Ron; Onuchic, José N.; Nechushtai, Rachel; Center for Theoretical Biological PhysicsMitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron–sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron–sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT–VDAC1–mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.Item Altered Backbone and Side-Chain Interactions Result in Route Heterogeneity during the Folding of Interleukin-1b (IL-1b)(Biophysical Society, 2013-08) Capraro, Dominique T.; Lammert, Heiko; Heidary, David K.; Roy, Melinda; Gross, Larry A.; Onuchic, José N.; Jennings, Patricia A.; Center for Theoretical Biological PhysicsDeletion of the b-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1b into antagonist activity. Conversely, circular permutations of IL-1b conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1b would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated b-strand bridging interactions within the pseudosymmetric b-trefoil fold of IL-1b highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1b. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity.Item An associative memory Hamiltonian model for DNA and nucleosomes(PLOS, 2023) Lu, Weiqi; Onuchic, José N.; Pierro, Michele Di; Center for Theoretical Biological PhysicsA model for DNA and nucleosomes is introduced with the goal of studying chromosomes from a single base level all the way to higher-order chromatin structures. This model, dubbed the Widely Editable Chromatin Model (WEChroM), reproduces the complex mechanics of the double helix including its bending persistence length and twisting persistence length, and the temperature dependence of the former. The WEChroM Hamiltonian is composed of chain connectivity, steric interactions, and associative memory terms representing all remaining interactions leading to the structure, dynamics, and mechanical characteristics of the B-DNA. Several applications of this model are discussed to demonstrate its applicability. WEChroM is used to investigate the behavior of circular DNA in the presence of positive and negative supercoiling. We show that it recapitulates the formation of plectonemes and of structural defects that relax mechanical stress. The model spontaneously manifests an asymmetric behavior with respect to positive or negative supercoiling, similar to what was previously observed in experiments. Additionally, we show that the associative memory Hamiltonian is also capable of reproducing the free energy of partial DNA unwrapping from nucleosomes. WEChroM is designed to emulate the continuously variable mechanical properties of the 10nm fiber and, by virtue of its simplicity, is ready to be scaled up to molecular systems large enough to investigate the structural ensembles of genes. WEChroM is implemented in the OpenMM simulation toolkits and is freely available for public use.Item BAP1 is a novel regulator of HIF-1α(PNAS, 2023) Bononi, Angela; Wang, Qian; Zolondick, Alicia A.; Bai, Fang; Steele-Tanji, Mika; Suarez, Joelle S.; Pastorino, Sandra; Sipes, Abigail; Signorato, Valentina; Ferro, Angelica; Novelli, Flavia; Kim, Jin-Hee; Minaai, Michael; Takinishi, Yasutaka; Pellegrini, Laura; Napolitano, Andrea; Xu, Ronghui; Farrar, Christine; Goparaju, Chandra; Bassi, Cristian; Negrini, Massimo; Pagano, Ian; Sakamoto, Greg; Gaudino, Giovanni; Pass, Harvey I.; Onuchic, José N.; Yang, Haining; Carbone, Michele; Center for Theoretical Biological PhysicsBAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1β forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.Item Biomolecular dynamics: order–disorder transitions and energy landscapes(IOP Publishing, 2012) Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Onuchic, José N.; Center for Theoretical Biological PhysicsWhile the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively-weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss 1) the development of the energy landscape theory of biomolecular folding, 2) recent advances towards establishing a consistent understanding of folding and function, and 3) emerging themes in the functional motions of enzymes, biomolecular motors, and other biomolecular machines. Recent theoretical, computational, and experimental lines of investigation are providing a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provide significant contributions to the free-energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions.Item Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis(Public Library of Science, 2015) Lipper, Colin H.; Paddock, Mark L.; Onuchic, José N.; Mittler, Ron; Nechushtai, Rachel; Jennings, Patricia A.; Center for Theoretical Biological PhysicsIron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA.Item CISD3/MiNT is required for complex I function, mitochondrial integrity, and skeletal muscle maintenance(National Academy of Sciences, 2024) Nechushtai, Rachel; Rowland, Linda; Karmi, Ola; Marjault, Henri-Baptiste; Nguyen, Thi Thao; Mittal, Shubham; Ahmed, Raheel S.; Grant, DeAna; Manrique-Acevedo, Camila; Morcos, Faruck; Onuchic, José N.; Mittler, Ron; Center for Theoretical Biological PhysicsMitochondria play a central role in muscle metabolism and function. A unique family of iron–sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3–NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.Item Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures(AIP Publishing LLC., 2015) Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Schug, Alexander; Onuchic, José N.; Center for Theoretical Biological PhysicsThe diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMRstructures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.Item Contact map dependence of a T-cell receptor binding repertoire(American Physical Society, 2022) Chau, Kevin Ng; George, Jason T.; Onuchic, José N.; Lin, Xingcheng; Levine, Herbert; Center for Theoretical Biological PhysicsThe T-cell arm of the adaptive immune system provides the host protection against unknown pathogens by discriminating between host and foreign material. This discriminatory capability is achieved by the creation of a repertoire of cells each carrying a T-cell receptor (TCR) specific to non-self-antigens displayed as peptides bound to the major histocompatibility complex (pMHC). The understanding of the dynamics of the adaptive immune system at a repertoire level is complex, due to both the nuanced interaction of a TCR-pMHC pair and to the number of different possible TCR-pMHC pairings, making computationally exact solutions currently unfeasible. To gain some insight into this problem, we study an affinity-based model for TCR-pMHC binding in which a crystal structure is used to generate a distance-based contact map that weights the pairwise amino acid interactions. We find that the TCR-pMHC binding energy distribution strongly depends both on the number of contacts and the repeat structure allowed by the topology of the contact map of choice; this in turn influences T-cell recognition probability during negative selection, with higher variances leading to higher survival probabilities. In addition, we quantify the degree to which neoantigens with mutations in sites with higher contacts are recognized at a higher rate.Item De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture(National Academy of Sciences, 2017) Di Pierro, Michele; Cheng, Ryan R.; Aiden, Erez Lieberman; Wolynes, Peter G.; Onuchic, José N.; Center for Theoretical Biological PhysicsInside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible.Item Decoding the coupled decision-making of the epithelial-mesenchymal transition and metabolic reprogramming in cancer(Cell Press, 2023) Galbraith, Madeline; Levine, Herbert; Onuchic, José N.; Jia, Dongya; Center for Theoretical Biological PhysicsCancer metastasis relies on an orchestration of traits driven by different interacting functional modules, including metabolism and epithelial-mesenchymal transition (EMT). During metastasis, cancer cells can acquire a hybrid metabolic phenotype (W/O) by increasing oxidative phosphorylation without compromising glycolysis and they can acquire a hybrid epithelial/mesenchymal (E/M) phenotype by engaging EMT. Both the W/O and E/M states are associated with high metastatic potentials, and many regulatory links coupling metabolism and EMT have been identified. Here, we investigate the coupled decision-making networks of metabolism and EMT. Their crosstalk can exhibit synergistic or antagonistic effects on the acquisition and stability of different coupled metabolism-EMT states. Strikingly, the aggressive E/M-W/O state can be enabled and stabilized by the crosstalk irrespective of these hybrid states’ availability in individual metabolism or EMT modules. Our work emphasizes the mutual activation between metabolism and EMT, providing an important step toward understanding the multifaceted nature of cancer metastasis.Item Designing bacterial signaling interactions with coevolutionary landscapes(Public Library of Science, 2018) Cheng, Ryan R.; Haglund, Ellinor; Tiee, Nicholas S.; Morcos, Faruck; Levine, Herbert; Adams, Joseph A.; Jennings, Patricia A.; Onuchic, José N.Selecting amino acids to design novel protein-protein interactions that facilitate catalysis is a daunting challenge. We propose that a computational coevolutionary landscape based on sequence analysis alone offers a major advantage over expensive, time-consuming brute-force approaches currently employed. Our coevolutionary landscape allows prediction of single amino acid substitutions that produce functional interactions between non-cognate, interspecies signaling partners. In addition, it can also predict mutations that maintain segregation of signaling pathways across species. Specifically, predictions of phosphotransfer activity between the Escherichia coli histidine kinase EnvZ to the non-cognate receiver Spo0F from Bacillus subtilis were compiled. Twelve mutations designed to enhance, suppress, or have a neutral effect on kinase phosphotransfer activity to a non-cognate partner were selected. We experimentally tested the ability of the kinase to relay phosphate to the respective designed Spo0F receiver proteins against the theoretical predictions. Our key finding is that the coevolutionary landscape theory, with limited structural data, can significantly reduce the search-space for successful prediction of single amino acid substitutions that modulate phosphotransfer between the two-component His-Asp relay partners in a predicted fashion. This combined approach offers significant improvements over large-scale mutations studies currently used for protein engineering and design.Item Dimeric interactions and complex formation using direct coevolutionary couplings(Nature Publishing Group, 2015) dos Santos, Ricardo N.; Morcos, Faruck; Jana, Biman; Andricopulo, Adriano D.; Onuchic, José N.; Center for Theoretical Biological PhysicsWe develop a procedure to characterize the association of protein structures into homodimers using coevolutionary couplings extracted from Direct Coupling Analysis (DCA) in combination with Structure Based Models (SBM). Identification of dimerization contacts using DCA is more challenging than intradomain contacts since direct couplings are mixed with monomeric contacts. Therefore a systematic way to extract dimerization signals has been elusive. We provide evidence that the prediction of homodimeric complexes is possible with high accuracy for all the cases we studied which have rich sequence information. For the most accurate conformations of the structurally diverse dimeric complexes studied the mean and interfacial RMSDs are 1.95Å and 1.44Å, respectively. This methodology is also able to identify distinct dimerization conformations as for the case of the family of response regulators, which dimerize upon activation. The identification of dimeric complexes can provide interesting molecular insights in the construction of large oligomeric complexes and be useful in the study of aggregation related diseases like Alzheimer’s or Parkinson’s.Item DNA supercoiling-mediated collective behavior of co-transcribing RNA polymerases(Oxford University Press, 2022) Tripathi, Shubham; Brahmachari, Sumitabha; Onuchic, José N.; Levine, Herbert; Center for Theoretical Biological PhysicsMultiple RNA polymerases (RNAPs) transcribing a gene have been known to exhibit collective group behavior, causing the transcription elongation rate to increase with the rate of transcription initiation. Such behavior has long been believed to be driven by a physical interaction or ‘push’ between closely spaced RNAPs. However, recent studies have posited that RNAPs separated by longer distances may cooperate by modifying the DNA segment under transcription. Here, we present a theoretical model incorporating the mechanical coupling between RNAP translocation and the DNA torsional response. Using stochastic simulations, we demonstrate DNA supercoiling-mediated long-range cooperation between co-transcribing RNAPs. We find that inhibiting transcription initiation can slow down the already recruited RNAPs, in agreement with recent experimental observations, and predict that the average transcription elongation rate varies non-monotonically with the rate of transcription initiation. We further show that while RNAPs transcribing neighboring genes oriented in tandem can cooperate, those transcribing genes in divergent or convergent orientations can act antagonistically, and that such behavior holds over a large range of intergenic separations. Our model makes testable predictions, revealing how the mechanical interplay between RNAPs and the DNA they transcribe can govern transcriptional dynamics.Item The Dominant Folding Route Minimizes Backbone Distortion in SH3(2012-11-15) Lammert, Heiko; Noel, Jeffrey K.; Onuchic, José N.; Center for Theoretical Biological PhysicsItem Folding Circular Permutants of IL-1β: Route Selection Driven by Functional Frustration(Public Library of Science, 2012) Capraro, Dominique T.; Gosavi, Shachi; Roy, Melinda; Onuchic, José N.; Jennings, Patricia A.; Center for Theoretical Biological PhysicsInterleukin-1β (IL-1β) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT “functional loop-packing route”, despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins.Item Free energy landscape for the binding process of Huperzine A to acetylcholinesterase(National Academy of Sciences, 2012) Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N.; Jiang, Hualiang; Center for Theoretical Biological PhysicsDrug-target residence time (t = 1/koff, where koff is the dissociation rate constant) has become an important index in discovering betteror best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, koff and activation free energy of dissociation (ΔG≠ off). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated.We applied this method to simulate the binding event of the anti-Alzheimer’s disease drug (−)−Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/ mol. The method also provides atomic resolution information for the (−)−Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect thismethodology to be widely applicable to drug discovery and development.Item Generalized Manning Condensation Model Captures the RNA Ion Atmosphere(American Physical Society, 2015) Hayes, Ryan L.; Noel, Jeffrey K.; Mandic, Ana; Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Mohanty, Udayan; Onuchic, José N.; Center for Theoretical Biological PhysicsRNA is highly sensitive to the ionic environment and typically requires Mg2+ to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg2+ ions explicitly to account for ion-ion correlations neglected by mean-field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, nonlimiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg2+ associated with the RNA, Γ2+, because Γ2+ is directly related to the Mg2+-RNA interaction free energy. The excellent agreement with experiment demonstrates that the model captures the ionic dependence of the RNA free energy landscape.Item Genomics-aided structure prediction(2012) Sulkowska, Joanna I.; Morcos, Faruck; Weigt, Martin; Hwa, Terence; Onuchic, José N.; National Science Foundation; Center for Theoretical Biological PhysicsWe introduce a theoretical framework that exploits the everincreasing genomic sequence information for protein structure prediction. Structure-based models are modified to incorporate constraints by a large number of non-local contacts estimated from direct coupling analysis (DCA) of co-evolving genomic sequences. A simple hybrid method, called DCA-fold, integrating DCA contacts with an accurate knowledge of local information (e.g., the local secondary structure) is sufficient to fold proteins in the range of 1–3 Å resolution.Item Germline BARD1 variants predispose to mesothelioma by impairing DNA repair and calcium signaling(National Academy of Sciences, 2024) Novelli, Flavia; Yoshikawa, Yoshie; Vitto, Veronica Angela Maria; Modesti, Lorenzo; Minaai, Michael; Pastorino, Sandra; Emi, Mitsuru; Kim, Jin-Hee; Kricek, Franz; Bai, Fang; Onuchic, José N.; Bononi, Angela; Suarez, Joelle S.; Tanji, Mika; Favaron, Cristina; Zolondick, Alicia A.; Xu, Ronghui; Takanishi, Yasutaka; Wang, Zhanwei; Sakamoto, Greg; Gaudino, Giovanni; Grzymski, Joseph; Grosso, Federica; Schrump, David S.; Pass, Harvey I.; Atanesyan, Lilit; Smout, Jan; Savola, Suvi; Sarin, Kavita Y.; Abolhassani, Hassan; Hammarström, Lennart; Pan-Hammarström, Qiang; Giorgi, Carlotta; Pinton, Paolo; Yang, Haining; Carbone, Michele; Center for Theoretical Biological PhysicsWe report that ~1.8% of all mesothelioma patients and 4.9% of those younger than 55, carry rare germline variants of the BRCA1 associated RING domain 1 (BARD1) gene that were predicted to be damaging by computational analyses. We conducted functional assays, essential for accurate interpretation of missense variants, in primary fibroblasts that we established in tissue culture from a patient carrying the heterozygous BARD1V523A mutation. We found that these cells had genomic instability, reduced DNA repair, and impaired apoptosis. Investigating the underlying signaling pathways, we found that BARD1 forms a trimeric protein complex with p53 and SERCA2 that regulates calcium signaling and apoptosis. We validated these findings in BARD1-silenced primary human mesothelial cells exposed to asbestos. Our study elucidated mechanisms of BARD1 activity and revealed that heterozygous germline BARD1 mutations favor the development of mesothelioma and increase the susceptibility to asbestos carcinogenesis. These mesotheliomas are significantly less aggressive compared to mesotheliomas in asbestos workers.
- «
- 1 (current)
- 2
- 3
- »