Browsing by Author "Nugraha, A.R.T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes(The American Physical Society, 2013) Nugraha, A.R.T.; Rosenthal, E.I.; Hasdeo, E.H.; Sanders, G.D.; Stanton, C.J.; Dresselhaus, M.S.; Saito, R.We discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a spatially distributed driving force in real space which involves many phonon wave vectors of the exciton-phonon interaction. The equation of motion for the coherent phonons is modeled phenomenologically by the Klein-Gordon equation, which we solve for the oscillation amplitudes as a function of space and time. By averaging the calculated amplitudes per nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble the homogeneous oscillations that are observed in some pump-probe experiments. We interpret this result to mean that the experiments are only able to see a spatial average of coherent phonon oscillations over the wavelength of light in carbon nanotubes and the microscopic details are averaged out. Our interpretation is justified by calculating the time-dependent absorption spectra resulting from the macroscopic atomic displacements induced by the coherent phonon oscillations. The calculated coherent phonon spectra including excitonic effects show the experimentally observed symmetric peaks at the nanotube transition energies, in contrast to the asymmetric peaks that would be obtained if excitonic effects were not included.Item Theory of coherent phonons in carbon nanotubes and graphene nanoribbons(IOP Publishing, 2013) Sanders, G.D.; Nugraha, A.R.T.; Sato, K.; Kim, J.-H.; Kono, J.; Saito, R.; Stanton, C.J.; Richard E. Smalley Institute for Nanoscale Science and TechnologyWe survey our recent theoretical studies on the generation and detection of coherent radial breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial breathing like mode (RBLM) phonons in graphene nanoribbons. We present a microscopic theory for the electronic states, phonon modes, optical matrix elements and electronヨphonon interaction matrix elements that allows us to calculate the coherent phonon spectrum. An extended tight-binding (ETB) model has been used for the electronic structure and a valence force field (VFF) model has been used for the phonon modes. The coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on the photoexcited carrier density. We discuss the dependence of the coherent phonon spectrum on the nanotube chirality and type, and also on the graphene nanoribbon mod number and class (armchair versus zigzag). We compare these results with a simpler effective mass theory where reasonable agreement with the main features of the coherent phonon spectrum is found. In particular, the effective mass theory helps us to understand the initial phase of the coherent phonon oscillations for a given nanotube chirality and type. We compare these results to two different experiments for nanotubes: (i) micelle suspended tubes and (ii) aligned nanotube films. In the case of graphene nanoribbons, there are no experimental observations to date. We also discuss, based on the evaluation of the electronヨphonon interaction matrix elements, the initial phase of the coherent phonon amplitude and its dependence on the chirality and type. Finally, we discuss previously unpublished results for coherent phonon amplitudes in zigzag nanoribbons obtained using an effective mass theory.