Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nguyen, Tu Anh"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Neural Network Verification as Piecewise Linear Optimization: Formulations for the Composition of Staircase Functions
    (2024-05-16) Nguyen, Tu Anh; Schaefer, Andrew J
    We present a technique for neural network verification using mixed-integer programming (MIP) formulations. We derive a \emph{strong formulation} for each neuron in a network using piecewise linear activation functions. Additionally, as in general, these formulations may require an exponential number of inequalities, we also derive a separation procedure that runs in super-linear time in the input dimension. We first introduce and develop our technique on the class of \emph{staircase} functions, which generalizes the ReLU, binarized, and quantized activation functions. We then use results for staircase activation functions to obtain a separation method for general piecewise linear activation functions. Empirically, using our strong formulation and separation technique, we can reduce the computational time in exact verification settings based on MIP and improve the false negative rate for inexact verifiers relying on the relaxation of the MIP formulation. While originally developed for neural network formulation, the MIP formulation and its technical results draw heavily on classical theory in linear optimization, and may be of independent interest to other applications.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892