Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nguyen, Edward Duc Hien"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemEmbargo
    On Graphs with Finite-Time Consensus and Their Use in Gradient Tracking
    (2024-05-20) Nguyen, Edward Duc Hien; Uribe, César
    A crucial design decision when employing distributed or decentralized optimization algorithms in practice is the choice of topology. A topology should be sufficiently well connected such that when agents communicate, agents reach a consensus faster. However, more densely connected topologies come with a price of higher bandwidth cost or latency. To address this issue, we study sequences of graphs satisfying the finite-time consensus property (i.e., iterating through such a finite sequence is equivalent to performing global or exact averaging) and their use in the decentralized optimization algorithm Gradient Tracking. We provide an explicit weight matrix representation of the studied sequences and prove their finite-time consensus property. Moreover, we incorporate the studied finite-time consensus topologies into Gradient Tracking and present a new algorithmic scheme called Gradient Tracking for Finite-Time Consensus Topologies (GT-FT). We analyze the new scheme for nonconvex problems with stochastic gradient estimates. Our analysis shows that the convergence rate of GT-FT does not depend on the heterogeneity of the agents' functions or the connectivity of any individual graph in the topology sequence. Furthermore, owing to the sparsity of the graphs, GT-FT requires lower communication costs than Gradient Tracking using the static counterpart of the topology sequence.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892