Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ng, Boon Loong"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Enabling a “Use-or-Share” Framework for PAL–GAA Sharing in CBRS Networks via Reinforcement Learning
    (IEEE, 2019) Tarver, Chance; Tonnemacher, Matthew; Chandrasekhar, Vikram; Chen, Hao; Ng, Boon Loong; Zhang, Jianzhong; Cavallaro, Joseph R.; Camp, Joseph
    By implementing reinforcement learning-aided listen-before-talk (LBT) schemes over a citizens broadband radio service (CBRS) network, we increase the spatial reuse at secondary nodes while minimizing the interference footprint on higher-tier nodes. The federal communications commission encourages “use-or-share” policies in the CBRS band across the priority access license (PAL)-general authorized access (GAA) priority tiers by opportunistically allowing the lower-priority GAA nodes to access unused higher-priority PAL spectrum. However, there is currently no mechanism to enable this cross-tier spectrum sharing. In this paper, we propose and evaluate LBT schemes that allow opportunistic access to PAL spectrum. We find that by allowing LBT in a two carrier, two eNB scenario, we see upward of 50% user perceived throughput (UPT) gains for both eNBs. Furthermore, we examine the use of ${Q}$ -learning to adapt the energy-detection threshold (EDT), combating problematic topologies, such as hidden and exposed nodes. With merely a 4% reduction in primary node UPT, we see up to 350% gains in average secondary node UPT when adapting the EDT of opportunistically transmitting nodes.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892