Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ndili, Unoma Ifeyinwa"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A coding theoretic approach to image segmentation
    (2001) Ndili, Unoma Ifeyinwa; Nowak, Robert D.
    Using a coding theoretic approach, we achieve unsupervised image segmentation by implementing Rissanen's concept of Minimum Description Length (MDL) for estimating piecewise homogeneous regions in images. MDL offers a mathematical foundation for balancing brevity of descriptions against their fidelity to the data by penalizing overly complex representations. Our image model is a Gaussian random field whose mean and variance functions are piecewise constant. The image pixels are conditionally independent and Gaussian, given the mean and variance functions. Our model is aimed at identifying regions of constant intensity (mean) and texture (variance). We adopt a multi-scale encoding approach to the segmentation problem, and develop two different schemes. One algorithm is based on an adaptive (greedy) rectangular partitioning, while the second algorithm is an optimally-pruned wedgelet-decorated dyadic partitioning scheme. We compare the two algorithms with the more common signal plus constant noise schemes, which account for variations in mean only. We explore applications of our algorithms on Synthetic Aperture Radar (SAR) imagery. Based on our segmentation scheme, we implement a robust Constant False alarm Rate (CFAR) detector towards Automatic Target Recognition (ATR) on Laser Radar (LADAR) and Infra-Red (IR) images.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892