Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Navin, Nicholas"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data
    (Public Library of Science, 2020) Mallory, Xian F.; Edrisi, Mohammadamin; Navin, Nicholas; Nakhleh, Luay
    Single-cell DNA sequencing technologies are enabling the study of mutations and their evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been implicated in the development and progression of various types of cancer. A wide array of methods for CNA detection has been either developed specifically for or adapted to single-cell DNA sequencing data. Understanding the strengths and limitations that are unique to each of these methods is very important for obtaining accurate copy number profiles from single-cell DNA sequencing data. We benchmarked three widely used methods–Ginkgo, HMMcopy, and CopyNumber–on simulated as well as real datasets. To facilitate this, we developed a novel simulator of single-cell genome evolution in the presence of CNAs. Furthermore, to assess performance on empirical data where the ground truth is unknown, we introduce a phylogeny-based measure for identifying potentially erroneous inferences. While single-cell DNA sequencing is very promising for elucidating and understanding CNAs, our findings show that even the best existing method does not exceed 80% accuracy. New methods that significantly improve upon the accuracy of these three methods are needed. Furthermore, with the large datasets being generated, the methods must be computationally efficient.
  • Loading...
    Thumbnail Image
    Item
    Methods for copy number aberration detection from single-cell DNA-sequencing data
    (Springer Nature, 2020) Mallory, Xian F.; Edrisi, Mohammadamin; Navin, Nicholas; Nakhleh, Luay
    Copy number aberrations (CNAs), which are pathogenic copy number variations (CNVs), play an important role in the initiation and progression of cancer. Single-cell DNA-sequencing (scDNAseq) technologies produce data that is ideal for inferring CNAs. In this review, we review eight methods that have been developed for detecting CNAs in scDNAseq data, and categorize them according to the steps of a seven-step pipeline that they employ. Furthermore, we review models and methods for evolutionary analyses of CNAs from scDNAseq data and highlight advances and future research directions for computational methods for CNA detection from scDNAseq data.
  • Loading...
    Thumbnail Image
    Item
    Monovar: single-nucleotide variant detection in single cells
    (Springer Nature, 2016) Zafar, Hamim; Wang, Yong; Nakhleh, Luay; Navin, Nicholas; Chen, Ken
    Current variant callers are not suitable for single-cell DNA sequencing, as they do not account for allelic dropout, false-positive errors and coverage nonuniformity. We developed Monovar (https://bitbucket.org/hamimzafar/monovar), a statistical method for detecting and genotyping single-nucleotide variants in single-cell data. Monovar exhibited superior performance over standard algorithms on benchmarks and in identifying driver mutations and delineating clonal substructure in three different human tumor data sets.
  • Loading...
    Thumbnail Image
    Item
    SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data
    (Cold Spring Harbor Laboratory Press, 2019) Zafar, Hamim; Navin, Nicholas; Chen, Ken; Nakhleh, Luay
    Accumulation and selection of somatic mutations in a Darwinian framework result in intra-tumor heterogeneity (ITH) that poses significant challenges to the diagnosis and clinical therapy of cancer. Identification of the tumor cell populations (clones) and reconstruction of their evolutionary relationship can elucidate this heterogeneity. Recently developed single-cell DNA sequencing (SCS) technologies promise to resolve ITH to a single-cell level. However, technical errors in SCS data sets, including false-positives (FP) and false-negatives (FN) due to allelic dropout, and cell doublets, significantly complicate these tasks. Here, we propose a nonparametric Bayesian method that reconstructs the clonal populations as clusters of single cells, genotypes of each clone, and the evolutionary relationship between the clones. It employs a tree-structured Chinese restaurant process as the prior on the number and composition of clonal populations. The evolution of the clonal populations is modeled by a clonal phylogeny and a finite-site model of evolution to account for potential mutation recurrence and losses. We probabilistically account for FP and FN errors, and cell doublets are modeled by employing a Beta-binomial distribution. We develop a Gibbs sampling algorithm comprising partial reversible-jump and partial Metropolis-Hastings updates to explore the joint posterior space of all parameters. The performance of our method on synthetic and experimental data sets suggests that joint reconstruction of tumor clones and clonal phylogeny under a finite-site model of evolution leads to more accurate inferences. Our method is the first to enable this joint reconstruction in a fully Bayesian framework, thus providing measures of support of the inferences it makes.
  • Loading...
    Thumbnail Image
    Item
    SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models
    (BioMed Central, 9/19/2017) Zafar, Hamim; Tzen, Anthony; Navin, Nicholas; Chen, Ken; Nakhleh, Luay
    Abstract Single-cell sequencing enables the inference of tumor phylogenies that provide insights on intra-tumor heterogeneity and evolutionary trajectories. Recently introduced methods perform this task under the infinite-sites assumption, violations of which, due to chromosomal deletions and loss of heterozygosity, necessitate the development of inference methods that utilize finite-sites models. We propose a statistical inference method for tumor phylogenies from noisy single-cell sequencing data under a finite-sites model. The performance of our method on synthetic and experimental data sets from two colorectal cancer patients to trace evolutionary lineages in primary and metastatic tumors suggests that employing a finite-sites model leads to improved inference of tumor phylogenies.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892