Browsing by Author "Narayana, Ponnada A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Automatic Active Lesion Tracking in Multiple Sclerosis Using Unsupervised Machine Learning(MDPI, 2024) Uwaeze, Jason; Narayana, Ponnada A.; Kamali, Arash; Braverman, Vladimir; Jacobs, Michael A.; Akhbardeh, AlirezaBackground: Identifying active lesions in magnetic resonance imaging (MRI) is crucial for the diagnosis and treatment planning of multiple sclerosis (MS). Active lesions on MRI are identified following the administration of Gadolinium-based contrast agents (GBCAs). However, recent studies have reported that repeated administration of GBCA results in the accumulation of Gd in tissues. In addition, GBCA administration increases health care costs. Thus, reducing or eliminating GBCA administration for active lesion detection is important for improved patient safety and reduced healthcare costs. Current state-of-the-art methods for identifying active lesions in brain MRI without GBCA administration utilize data-intensive deep learning methods. Objective: To implement nonlinear dimensionality reduction (NLDR) methods, locally linear embedding (LLE) and isometric feature mapping (Isomap), which are less data-intensive, for automatically identifying active lesions on brain MRI in MS patients, without the administration of contrast agents. Materials and Methods: Fluid-attenuated inversion recovery (FLAIR), T2-weighted, proton density-weighted, and pre- and post-contrast T1-weighted images were included in the multiparametric MRI dataset used in this study. Subtracted pre- and post-contrast T1-weighted images were labeled by experts as active lesions (ground truth). Unsupervised methods, LLE and Isomap, were used to reconstruct multiparametric brain MR images into a single embedded image. Active lesions were identified on the embedded images and compared with ground truth lesions. The performance of NLDR methods was evaluated by calculating the Dice similarity (DS) index between the observed and identified active lesions in embedded images. Results: LLE and Isomap, were applied to 40 MS patients, achieving median DS scores of 0.74 ± 0.1 and 0.78 ± 0.09, respectively, outperforming current state-of-the-art methods. Conclusions: NLDR methods, Isomap and LLE, are viable options for the identification of active MS lesions on non-contrast images, and potentially could be used as a clinical decision tool.Item Detection of diffusely abnormal white matter in multiple sclerosis on multiparametric brain MRI using semi-supervised deep learning(Springer Nature, 2024) Musall, Benjamin C.; Gabr, Refaat E.; Yang, Yanyu; Kamali, Arash; Lincoln, John A.; Jacobs, Michael A.; Ly, Vi; Luo, Xi; Wolinsky, Jerry S.; Narayana, Ponnada A.; Hasan, Khader M.In addition to focal lesions, diffusely abnormal white matter (DAWM) is seen on brain MRI of multiple sclerosis (MS) patients and may represent early or distinct disease processes. The role of MRI-observed DAWM is understudied due to a lack of automated assessment methods. Supervised deep learning (DL) methods are highly capable in this domain, but require large sets of labeled data. To overcome this challenge, a DL-based network (DAWM-Net) was trained using semi-supervised learning on a limited set of labeled data for segmentation of DAWM, focal lesions, and normal-appearing brain tissues on multiparametric MRI. DAWM-Net segmentation performance was compared to a previous intensity thresholding-based method on an independent test set from expert consensus (N = 25). Segmentation overlap by Dice Similarity Coefficient (DSC) and Spearman correlation of DAWM volumes were assessed. DAWM-Net showed DSC > 0.93 for normal-appearing brain tissues and DSC > 0.81 for focal lesions. For DAWM-Net, the DAWM DSC was 0.49 ± 0.12 with a moderate volume correlation (ρ = 0.52, p < 0.01). The previous method showed lower DAWM DSC of 0.26 ± 0.08 and lacked a significant volume correlation (ρ = 0.23, p = 0.27). These results demonstrate the feasibility of DL-based DAWM auto-segmentation with semi-supervised learning. This tool may facilitate future investigation of the role of DAWM in MS.