Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nandi, Ranjan Kaushik"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Flexural creep in pure and filled acrylic resin systems
    (1990) Nandi, Ranjan Kaushik; Armeniades, C. D.
    The creep behavior of poly (methyl methacrylate) and acrylic polymer concrete (PC) systems based on methyl methacrylate was studied in flexure. Creep in both pure and filled systems followed a power law time dependence. A differential form of the power law equation was used to eliminate the irregularities associated with time-independent and transient strains in the experimental data. de$\sb{\rm tot}$/dt = ln nk + (n $-$ 1) ln t where e$\sb{\rm tot}$ is the total strain and n and k are constants in the power law equation. Plots of creep rates versus time yielded good linear fits to the data, the slopes providing values for 'n', the power exponent. Vertical superposition was then used to reduce data at different stresses and resin contents, for the PCs onto a single master curve using different shift-factors. This data reduction was expressed in the form of an empirical expression: e(t, S, v) = e$\sb0$(ref). EXP (K$\sb{\rm S}$. (S $-$ S$\sb{\rm ref}$)). EXP (K$\sb{\rm v}$. (v $-$ v$\sb{\rm ref}$)). t$\sp{\rm n}$ which expresses the total creep strain as a product of separable functions of time (t), stress (S) and the resin volume fraction (v).
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892