Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Muralidhar Kulkarni, Kiran"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Ground-State Squeezing and Chiral Photonic Crystal Cavities in Ultrastrong Light-Matter Coupling
    (2025-04-25) Muralidhar Kulkarni, Kiran; Kono, Junichiro
    This thesis investigates quantum light–matter interactions in photonic-crystal cavities, focusing on two complementary projects. The first project develops a theoretical framework for Landau polaritons in terahertz cavities by computing ground-state current-current correlations in a two-dimensional electron gas under ultrastrong coupling (USC). We show that these correlations reveal an intrinsically squeezed ground state—an effect absent in conventional linear spectroscopy. The second project designs, fabricates, and characterizes a one-dimensional chiral photonic-crystal cavity that breaks time-reversal symmetry. The cavity consists of a silicon layer sandwiched between lightly doped indium antimonide (InSb) wafers, exploiting InSb’s low carrier mass and magnetoplasma nonreciprocity to support a single circularly polarized mode at 0.67 THz under a 0.3 T magnetic field, achieving a quality factor above 200. Systematic experiments—varying temperature, magnetic field, and polarization—together with simulations, confirm the cavity’s nonreciprocal behavior and robust mode confinement. Altogether, these studies deepen our understanding of USC-induced quantum effects in photonic cavities and introduce a versatile platform that enables precise manipulation of material properties by breaking key symmetries.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892