Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mualim, Yanto"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Nanomanipulation modeling and simulation
    (2007) Mualim, Yanto; Ghorbel, Fathi H.
    A novel approach to better model nanomanipulation of a nanosphere lying on a stage via a pushing scheme is presented. Besides its amenability to nonlinear analysis and simulation, the proposed model is also effective in reproducing experimental behavior commonly observed during AFM-type nanomanipulation. The proposed nanomanipulation model consists of integrated subsystems that consistently define the dynamics of the nanomanipulator tip and nanosphere, friction between the nanosphere and the stage, and the contact deformation between the nanomanipulator tip and the nanosphere. The main feature of the proposed nanomanipulation model is the Lund-Grenoble (LuGre) dynamic friction model that reliably represents the stick-slip behavior of atomic friction experienced by the nanosphere. The LuGre friction model introduces a new friction state and has desirable mathematical properties making it a well-posed dynamical model that characterizes friction with fidelity. The proposed nanomanipulation model facilitates further improvement and extension of each subsystem to accommodate other physical phenomena that characterize the physics and mechanics of nanomanipulation. Finally, the proposed model is simulated and compared to existing modes in the literature to demonstrate its versatility and effectiveness.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892