Browsing by Author "Moukaddam, Nidal"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Mobile sensing-based depression severity assessment in participants with heterogeneous mental health conditions(Springer Nature, 2024) Lamichhane, Bishal; Moukaddam, Nidal; Sabharwal, AshutoshMobile sensing-based depression severity assessment could complement the subjective questionnaires-based assessment currently used in practice. However, previous studies on mobile sensing for depression severity assessment were conducted on homogeneous mental health condition participants; evaluation of possible generalization across heterogeneous groups has been limited. Similarly, previous studies have not investigated the potential of free-living audio data for depression severity assessment. Audio recordings from free-living could provide rich sociability features to characterize depressive states. We conducted a study with 11 healthy individuals, 13 individuals with major depressive disorder, and eight individuals with schizoaffective disorders. Communication logs and location data from the participants’ smartphones and continuous audio recordings of free-living from a wearable audioband were obtained over a week for each participant. The depression severity prediction model trained using communication log and location data features had a root mean squared error (rmse) of 6.80. Audio-based sociability features further reduced the rmse to 6.07 (normalized rmse of 0.22). Audio-based sociability features also improved the F1 score in the five-class depression category classification model from 0.34 to 0.46. Thus, free-living audio-based sociability features complement the commonly used mobile sensing features to improve depression severity assessment. The prediction results obtained with mobile sensing-based features are better than the rmse of 9.83 (normalized rmse of 0.36) and the F1 score of 0.25 obtained with a baseline model. Additionally, the predicted depression severity had a significant correlation with reported depression severity (correlation coefficient of 0.76, $$p<$$0.001). Thus, our work shows that mobile sensing could model depression severity across participants with heterogeneous mental health conditions, potentially offering a screening tool for depressive symptoms monitoring in the broader population.Item Modeling Suicidality with Multimodal Impulsivity Characterization in Participants with Mental Health Disorder(Hindawi, 2023) Moukaddam, Nidal; Lamichhane, Bishal; Salas, Ramiro; Goodman, Wayne; Sabharwal, AshutoshIntroduction. Suicide is one of the leading causes of death across different age groups. The persistence of suicidal ideation and the progression of suicidal ideations to action could be related to impulsivity, the tendency to act on urges with low temporal latency, and little forethought. Quantifying impulsivity could thus help suicidality estimation and risk assessments in ideation-to-action suicidality frameworks. Methods. To model suicidality with impulsivity quantification, we obtained questionnaires, behavioral tests, heart rate variability (HRV), and resting state functional magnetic resonance imaging measurements from 34 participants with mood disorders. The participants were categorized into three suicidality groups based on their Mini-International Neuropsychiatric Interview: none, low, and moderate to severe. Results. Questionnaire and HRV-based impulsivity measures were significantly different between the suicidality groups with higher subscales of impulsivity associated with higher suicidality. A multimodal system to characterize impulsivity objectively resulted in a classification accuracy of 96.77% in the three-class suicidality group prediction task. Conclusions. This study elucidates the relative sensitivity of various impulsivity measures in differentiating participants with suicidality and demonstrates suicidality prediction with high accuracy using a multimodal objective impulsivity characterization in participants with mood disorders.Item Privacy-Preserving Social Ambiance Measure From Free-Living Speech Associates With Chronic Depressive and Psychotic Disorders(Frontiers, 2021) Chen, Wenwan; Sabharwal, Ashutosh; Taylor, Erica; Patel, Ankit B.; Moukaddam, NidalA social interaction consists of contributions by the individual, the environment and the interaction between the two. Ideally, to enable effective assessment and interventions for social isolation, an issue inherent to depressive and psychotic illnesses, the isolation must be identified in real-time and at an individual level. However, research addressing sociability deficits is largely focused on determining loneliness, rather than isolation, and lacks focus on the richness of the social environment the individual revolves in. In this paper, We describe the development of an automated, objective and privacy-preserving Social Ambiance Measure (SAM) that converts unconstrained audio recordings collected from wrist-worn audio-bands into four levels, ranging from none to active. The ambiance levels are based on the number of simultaneous speakers, which is a proxy for overall social activity in the environment. Results show that social ambiance patterns and time spent at each ambiance level differed between participants with depressive or psychotic disorders and healthy controls. Individuals with depression/psychosis spent less time in diverse environments and less time in moderate/active ambiance levels. Moreover, social ambiance patterns are found associated with the severity of self-reported depression, anxiety symptoms and personality traits. The results in this paper suggest that objectively measured social ambiance can be used as a marker of sociability, and holds potential to be leveraged to better understand social isolation and develop effective interventions for sociability challenges, thus improving mental health outcomes.Item Technology Implementation for Mental Health End Users: A Model to Guide Digital Transformation for Inpatient Mental Health Professionals(JMIR, 2023) Westheimer, Jessa Lin; Moukaddam, Nidal; Lindsay, Jan A.; Sabharwal, Ashutosh; Najafi, Bijan; Iacobelli, Peter A.; Boland, Robert J.; Patriquin, Michelle A.Digital transformation is the adoption of digital technologies by an entity in an effort to increase operational efficiency. In mental health care, digital transformation entails technology implementation to improve the quality of care and mental health outcomes. Most psychiatric hospitals rely heavily on “high-touch” interventions or those that require in-person, face-to-face interaction with the patient. Those that are exploring digital mental health care interventions, particularly for outpatient care, often copiously commit to the “high-tech” model, losing the crucial human element. The process of digital transformation, especially within acute psychiatric treatment settings, is in its infancy. Existing implementation models outline the development of patient-facing treatment interventions within the primary care system; however, to our knowledge, there is no proposed or established model for implementing a new provider-facing ministration tool within an acute inpatient psychiatric setting. Solving the complex challenges within mental health care demands that new mental health technology is developed in concert with a use protocol by and for the inpatient mental health professional (IMHP; the end user), allowing the “high-touch” to inform the “high-tech” and vice versa. Therefore, in this viewpoint article, we propose the Technology Implementation for Mental-Health End-Users framework, which outlines the process for developing a prototype of an IMHP-facing digital intervention tool in parallel with a protocol for the IMHP end user to deliver the intervention. By balancing the design of the digital mental health care intervention tool with IMHP end user resource development, we can significantly improve mental health outcomes and pioneer digital transformation nationwide.Item Tracking and Predicting Depressive Symptoms of Adolescents Using Smartphone-Based Self-Reports, Parental Evaluations, and Passive Phone Sensor Data: Development and Usability Study(JMIR Publications, 2020) Cao, Jian; Truong, Anh Lan; Banu, Sophia; Shah, Asim A.; Sabharwal, Ashutosh; Moukaddam, NidalBackground: Depression carries significant financial, medical, and emotional burden on modern society. Various proof-of-concept studies have highlighted how apps can link dynamic mental health status changes to fluctuations in smartphone usage in adult patients with major depressive disorder (MDD). However, the use of such apps to monitor adolescents remains a challenge. Objective: This study aimed to investigate whether smartphone apps are useful in evaluating and monitoring depression symptoms in a clinically depressed adolescent population compared with the following gold-standard clinical psychometric instruments: Patient Health Questionnaire (PHQ-9), Hamilton Rating Scale for Depression (HAM-D), and Hamilton Anxiety Rating Scale (HAM-A). Methods: We recruited 13 families with adolescent patients diagnosed with MDD with or without comorbid anxiety disorder. Over an 8-week period, daily self-reported moods and smartphone sensor data were collected by using the Smartphone- and OnLine usage–based eValuation for Depression (SOLVD) app. The evaluations from teens’ parents were also collected. Baseline depression and anxiety symptoms were measured biweekly using PHQ-9, HAM-D, and HAM-A. Results: We observed a significant correlation between the self-evaluated mood averaged over a 2-week period and the biweekly psychometric scores from PHQ-9, HAM-D, and HAM-A (0.45≤|r|≤0.63; P=.009, P=.01, and P=.003, respectively). The daily steps taken, SMS frequency, and average call duration were also highly correlated with clinical scores (0.44≤|r|≤0.72; all P<.05). By combining self-evaluations and smartphone sensor data of the teens, we could predict the PHQ-9 score with an accuracy of 88% (23.77/27). When adding the evaluations from the teens’ parents, the prediction accuracy was further increased to 90% (24.35/27). Conclusions: Smartphone apps such as SOLVD represent a useful way to monitor depressive symptoms in clinically depressed adolescents, and these apps correlate well with current gold-standard psychometric instruments. This is a first study of its kind that was conducted on the adolescent population, and it included inputs from both teens and their parents as observers. The results are preliminary because of the small sample size, and we plan to expand the study to a larger population.Item Turning data into better mental health: Past, present, and future(Frontiers Media S.A., 2022) Moukaddam, Nidal; Sano, Akane; Salas, Ramiro; Hammal, Zakia; Sabharwal, AshutoshIn this mini-review, we discuss the fundamentals of using technology in mental health diagnosis and tracking. We highlight those principles using two clinical concepts: (1) cravings and relapse in the context of addictive disorders and (2) anhedonia in the context of depression. This manuscript is useful for both clinicians wanting to understand the scope of technology use in psychiatry and for computer scientists and engineers wishing to assess psychiatric frameworks useful for diagnosis and treatment. The increase in smartphone ownership and internet connectivity, as well as the accelerated development of wearable devices, have made the observation and analysis of human behavior patterns possible. This has, in turn, paved the way to understand mental health conditions better. These technologies have immense potential in facilitating the diagnosis and tracking of mental health conditions; they also allow the implementation of existing behavioral treatments in new contexts (e.g., remotely, online, and in rural/underserved areas), and the possibility to develop new treatments based on new understanding of behavior patterns. The path to understand how to best use technology in mental health includes the need to match interdisciplinary frameworks from engineering/computer sciences and psychiatry. Thus, we start our review by introducing bio-behavioral sensing, the types of information available, and what behavioral patterns they may reflect and be related to in psychiatric diagnostic frameworks. This information is linked to the use of functional imaging, highlighting how imaging modalities can be considered “ground truth” for mental health/psychiatric dimensions, given the heterogeneity of clinical presentations, and the difficulty of determining what symptom corresponds to what disease. We then discuss how mental health/psychiatric dimensions overlap, yet differ from, psychiatric diagnoses. Using two clinical examples, we highlight the potential agreement areas in assessment/management of anhedonia and cravings. These two dimensions were chosen because of their link to two very prevalent diseases worldwide: depression and addiction. Anhedonia is a core symptom of depression, which is one of the leading causes of disability worldwide. Cravings, the urge to use a substance or perform an action (e.g., shopping, internet), is the leading step before relapse. Lastly, through the manuscript, we discuss potential mental health dimensions.