Browsing by Author "Mosqueda, Gilberto"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Disaster Risk Management Through the DesignSafe Cyberinfrastructure(Springer Nature, 2020) Pinelli, Jean-Paul; Esteva, Maria; Rathje, Ellen M.; Roueche, David; Brandenberg, Scott J.; Mosqueda, Gilberto; Padgett, Jamie; Haan, FrederickDesignSafe addresses the challenges of supporting integrative data-driven research in natural hazards engineering. It is an end-to-end data management, communications, and analysis platform where users collect, generate, analyze, curate, and publish large data sets from a variety of sources, including experiments, simulations, field research, and post-disaster reconnaissance. DesignSafe achieves key objectives through: (1) integration with high performance and cloud-computing resources to support the computational needs of the regional risk assessment community; (2) the possibility to curate and publish diverse data structures emphasizing relationships and understandability; and (3) facilitation of real time communications during natural hazards events and disasters for data and information sharing. The resultant services and tools shorten data cycles for resiliency evaluation, risk modeling validation, and forensic studies. This article illustrates salient features of the cyberinfrastructure. It summarizes its design principles, architecture, and functionalities. The focus is on case studies to show the impact of DesignSafe on the disaster risk community. The Next Generation Liquefaction project collects and standardizes case histories of earthquake-induced soil liquefaction into a relational database—DesignSafe—to permit users to interact with the data. Researchers can correlate in DesignSafe building dynamic characteristics based on data from building sensors, with observed damage based on ground motion measurements. Reconnaissance groups upload, curate, and publish wind, seismic, and coastal damage data they gather during field reconnaissance missions, so these datasets are available shortly after a disaster. As a part of the education and community outreach efforts of DesignSafe, training materials and collaboration space are also offered to the disaster risk management community.Item Enhancing Research in Natural Hazards Engineering Through the DesignSafe Cyberinfrastructure(Frontiers Media S.A., 2020) Rathje, Ellen M.; Dawson, Clint; Padgett, Jamie E.; Pinelli, Jean-Paul; Stanzione, Dan; Arduino, Pedro; Brandenberg, Scott J.; Cockerill, Tim; Esteva, Maria; Haan, Fred L. Jr.; Kareem, Ahsan; Lowes, Laura; Mosqueda, GilbertoThe DesignSafe cyberinfrastructure (www.designsafe-ci.org) is part of the NSF-funded Natural Hazard Engineering Research Infrastructure (NHERI) and provides cloud-based tools to manage, analyze, understand, and publish critical data for research to understand the impacts of natural hazards. The DesignSafe Data Depot provides private and public disk space to support research collaboration and data publishing through a web interface. The DesignSafe Reconnaissance Portal uses a map interface to provide easy access to data collected to investigate the effects of natural hazards, and the DesignSafe Workspace provides cloud-based tools for simulation, data analytics, and visualization; as well as access to high performance computing (HPC). This paper provides an overview of the DesignSafe cyberinfrastructure and describes specific examples of the use of DesignSafe in research for natural hazards. These examples include electronic data reports that use Jupyter notebooks to allow researchers to interrogate data interactively within the web portal, computational workflows that integrate ensembles of HPC-based simulations and surrogate modeling, and the publication of field research data after natural hazard events that utilize a variety of DesignSafe tools. The paper also provides an overall assessment of current DesignSafe impact and usage, demonstrating how DesignSafe is enhancing research in natural hazards.