Browsing by Author "Morgan, J.K."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Basal Accretion Along the South Central Chilean Margin and Its Relationship to Great Earthquakes(Wiley, 2020) Bangs, N.L.; Morgan, J.K.; Tréhu, A.M.; Contreras‐Reyes, E.; Arnulf, A.F.; Han, S.; Olsen, K.M.; Zhang, E.The south central Chilean margin regularly produces many of the world's largest earthquakes and tsunami, including the 2010 Mw 8.8 Maule and 1960 Mw 9.5 Valdivia events. In 2017, we acquired seismic reflection data along ~1,000 km of the margin using the R/V Langseth's 15 km long receiver array and 108.2 l (6,600 in3) seismic source to image structures associated with these ruptures. We focus on the Valdivia segment with the largest coseismic slip (~40 m). The outer 40 km of the forearc is an accretionary wedge constructed primarily of stacked sedimentary packages with irregular lengths and thicknesses and little along‐strike continuity. Forearc structures indicate that the accretionary wedge grows primarily through basal accretion of the downgoing trench fill. The décollement propagates along a weak boundary near the top of the trench fill but occasionally branches downward into the underthrust sediment along bedding horizons, peeling off slices that are underplated to the forearc. The shallow décollement level and the rarity of underplating events allow most of the trench sediment to subduct. As a result, only ~30% of the incoming sediment has been accreted since the Early Pliocene. This implies that, on average, ~1 km of sediment must subduct beyond the outer forearc, an inference that is supported by our seismic images. We propose that the thickness and great downdip and along‐strike extent of the underthrust layer, which separates the megathrust from the underlying roughness of the igneous ocean crust, ensures a smooth broad zone of strong coupling that generates the world's largest earthquakes and tsunami.Item Eastern Olympus Mons Basal Scarp: Structural and mechanical evidence for large-scale slope instability(American Geophysical Union, 2014) Weller, M.B.; McGovern, P.J.; Fournier, T.; Morgan, J.K.The expression of the Eastern Olympus Mons Basal Scarp (EOMBS) is seemingly unique along the edifice. It exhibits two slope-parallel structures: a nearly 100 km long upslope extensional normal fault system and a downslope contractional wrinkle ridge network, a combination that is found nowhere else on Olympus Mons. Through structural mapping and numerical modeling of slope stability of the EOMBS, we show that these structures are consistent with landsliding processes and volcanic spreading. The EOMBS is conditionally stable when the edifice contains pore fluid, and critically stable, or in failure, when the edifice contains a dipping overpressured confined aquifer and mechanical sublayer at depth. Failure of the fault-bounded portion of the flank results in estimated volumes of material ranging from 5600–6900 km3, or 32–39% of the estimated volume of the “East” Olympus Mons aureole lobe. We suggest that the EOMBS faults may be an expression of early stage flank collapse and aureole lobe formation. Ages of deformed volcano adjacent plains associated with the wrinkle ridges indicate that this portion of the edifice may have been tectonically active at < 50 Ma and may be coeval with estimated ages of adjacent outflow channels, 25–40 Ma. This observation suggests that conditions that favor flank failure, such as water at depth below the edifice, existed in the relatively recent past and potentially could drive deformation to the present day.Item Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand(The Geological Society of America, 2019) Fagereng, Å; Savage, H.M.; Morgan, J.K.; Wang, M.; Meneghini, F.; Barnes, P.M.; Bell, R.; Kitajima, H.; McNamara, D.D.; Saffer, D.M.; Wallace, L.M.; Petronotis, K.; LeVay, L.Geophysical observations show spatial and temporal variations in fault slip style on shallow subduction thrust faults, but geological signatures and underlying deformation processes remain poorly understood. International Ocean Discovery Program (IODP) Expeditions 372 and 375 investigated New Zealand’s Hikurangi margin in a region that has experienced both tsunami earthquakes and repeated slow-slip events. We report direct observations from cores that sampled the active Pāpaku splay fault at 304 m below the seafloor. This fault roots into the plate interface and comprises an 18-m-thick main fault underlain by ∼30 m of less intensely deformed footwall and an ∼10-m-thick subsidiary fault above undeformed footwall. Fault zone structures include breccias, folds, and asymmetric clasts within transposed and/or dismembered, relatively homogeneous, silty hemipelagic sediments. The data demonstrate that the fault has experienced both ductile and brittle deformation. This structural variation indicates that a range of local slip speeds can occur along shallow faults, and they are controlled by temporal, potentially far-field, changes in strain rate or effective stress.