Browsing by Author "Moreno, Amy C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Artificial intelligence uncertainty quantification in radiotherapy applications − A scoping review(Elsevier, 2024) Wahid, Kareem A.; Kaffey, Zaphanlene Y.; Farris, David P.; Humbert-Vidan, Laia; Moreno, Amy C.; Rasmussen, Mathis; Ren, Jintao; Naser, Mohamed A.; Netherton, Tucker J.; Korreman, Stine; Balakrishnan, Guha; Fuller, Clifton D.; Fuentes, David; Dohopolski, Michael J.Background/purpose The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. Methods We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. Results We identified 56 articles published from 2015 to 2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50 %), followed by image-synthesis (13 %), and multiple applications simultaneously (11 %). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32 %). Imaging data was used in 91 % of studies, while only 13 % incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60 %), with Monte Carlo dropout being the most commonly implemented UQ method (32 %) followed by ensembling (16 %). 55 % of studies did not share code or datasets. Conclusion Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, we identified a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.Item Optimized decision support for selection of transoral robotic surgery or (chemo)radiation therapy based on posttreatment swallowing toxicity(Wiley, 2023) Hemmati, Mehdi; Barbon, Carly; Mohamed, Abdallah S.R.; van Dijk, Lisanne V.; Moreno, Amy C.; Gross, Neil D.; Goepfert, Ryan P.; Lai, Stephen Y.; Hutcheson, Katherine A.; Schaefer, Andrew J.; Fuller, Clifton D.Background A primary goal in transoral robotic surgery (TORS) for oropharyngeal squamous cell cancer (OPSCC) survivors is to optimize swallowing function. However, the uncertainty in the outcomes of TORS including postoperative residual positive margin (PM) and extranodal extension (ENE), may necessitate adjuvant therapy, which may cause significant swallowing toxicity to survivors. Methods A secondary analysis was performed on a prospective registry data with low- to intermediate-risk human papillomavirus–related OPSCC possibly resectable by TORS. Decision trees were developed to model the uncertainties in TORS compared with definitive radiation therapy (RT) and chemoradiation therapy (CRT). Swallowing toxicities were measured by Dynamic Imaging Grade of Swallowing Toxicity (DIGEST), MD Anderson Dysphagia Inventory (MDADI), and the MD Anderson Symptom Inventory–Head and Neck (MDASI-HN) instruments. The likelihoods of PM/ENE were varied to determine the thresholds within which each therapy remains optimal. Results Compared with RT, TORS resulted in inferior swallowing function for moderate likelihoods of PM/ENE (>60% in short term for all instruments, >75% in long term for DIGEST and MDASI) leaving RT as the optimal treatment. Compared with CRT, TORS remained the optimal therapy based on MDADI and MDASI but showed inferior swallowing outcomes based on DIGEST for moderate-to-high likelihoods of PM/ENE (>75% for short-term and >40% for long-term outcomes). Conclusion In the absence of reliable estimation of postoperative PM/ENE concurrent with significant postoperative PM, the overall toxicity level in OPSCC patients undergoing TORS with adjuvant therapy may become more severe compared with patients receiving nonsurgical treatments thus advocating definitive (C)RT protocols.