Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Moon, Yongshik"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Camera-based positioning system using learning
    (2021-05-04) Shrivastava, Anshumali; Luo, Chen; Palem, Krishna; Moon, Yongshik; Noh, Soonhyun; Park, Daedong; Hong, Seongsoo; Rice University; Seoul National University R&DB Foundation; United States Patent and Trademark Office
    A device, system, and methods are described to perform machine-learning camera-based indoor mobile positioning. The indoor mobile positioning may utilize inexact computing, wherein a small decrease in accuracy is used to obtain significant computational efficiency. Hence, the positioning may be performed using a smaller memory overhead at a faster rate and with lower energy cost than previous implementations. The positioning may not involve any communication (or data transfer) with any other device or the cloud, providing privacy and security to the device. A hashing-based image matching algorithm may be used which is cheaper, both in energy and computation cost, over existing state-of-the-art matching techniques. This significant reduction allows end-to-end computation to be performed locally on the mobile device. The ability to run the complete algorithm on the mobile device may eliminate the need for the cloud, resulting in a privacy-preserving localization algorithm by design since network communication with other devices may not be required.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892