Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "McRae, Michael"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Integrated Instrumentation and Multivariate Index Assay System for Cardiovascular Health Assessment at the Point-of-Care
    (2016-04-20) McRae, Michael; McDevitt, John T
    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally, accounting for approximately one in three deaths. Early detection and frequent monitoring of traditional risk factors and biomarkers is necessary to save lives and reduce unnecessary costs due to CVD morbidity and mortality. This dissertation aims to develop new tools and processes that can contribute more effective means to assist in prevention and early intervention at the point-of-care through integrated instrumentation and predictive models for CVD. The Programmable Bio-Nano-Chip (p-BNC) is a platform to digitize biology in which small quantities of patient sample generate immunofluorescent signal that is optically extracted and converted to antigen concentrations. A novel fluid delivery method was developed to provide accurate and repeatable flow rates via actuation of the p-BNC cartridge’s blister packs. A portable analyzer instrument was designed and fabricated so as to facilitate fluid delivery, optical detection, automated data analysis, and intuitive mobile health interfaces, representing a universal system for acquiring, processing, and managing clinical data streams and overcoming many of the challenges facing the widespread clinical adoption of lab-on-a-chip technologies. The p-BNC system is also a biosensor system that learns—a diagnostic device that implements machine-learning algorithms for diagnosis and prognosis for a variety of disease applications. In this capacity, a Cardiac ScoreCard system was developed to predict a spectrum of CVD using multiplexed biomarker measurements, symptoms, medical history, and demographics. The combination of a platform to digitize biology and predictive analytics has the potential to alter the trajectory of medicine, where the current linear thinking—mainly based on late-stage disease diagnosis using expensive and cumbersome tools—is replaced by a pathway to exponential medicine made possible through the introduction of scalable tools with the capacity to learn.
  • Loading...
    Thumbnail Image
    Item
    Integrated instrumentation for the analysis of biofluids at the point-of-care
    (2018-08-28) McDevitt, John; Haque, Ahmed; McRae, Michael; Simmons, Glen; Rice University; United States Patent and Trademark Office
    This disclosure describes the design and function of a bead-based lab-on-a-chip portable analyzer for analyzing biomarker assay cards used in point-of-care testing.
  • Loading...
    Thumbnail Image
    Item
    Prediction of heart rate response to conclusion of the spontaneous breathing trial by fluctuation dissipation theory
    (IOP Publishing, 2013) Chen, Man; Niestemski, Liang Ren; Prevost, Robert; McRae, Michael; Cholleti, Sharath; Najarro, Gabriel; Buchman, Timothy G.; Deem, Michael W.; Bioengineering; Physics and Astronomy
    The non-equilibrium fluctuation dissipation theorem is applied to predict how critically ill patients respond to treatment, based upon data currently collected by standard hospital monitoring devices. This framework is demonstrated on a common procedure in critical care: the spontaneous breathing trial. It is shown that the responses of groups of similar patients to the spontaneous breathing trial can be predicted by the non-equilibrium fluctuation dissipation approach. This mathematical framework, when fully formed and applied to other clinical interventions, may serve as part of the basis for personalized critical care.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892