Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "McNeill, Reagin"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A new filtration of the Magnus kernel
    (2013-09-16) McNeill, Reagin; Harvey, Shelly; Cochran, Tim D.; Riviere, Beatrice M.
    For a oriented genus g surface with one boundary component, S_g, the Torelli group is the group of orientation preserving homeomorphisms of S_g that induce the identity on homology. The Magnus representation of the Torelli group represents the action on F/F'' where F=π_1(S_g) and F'' is the second term of the derived series. I show that the kernel of the Magnus representation, Mag(S_g), is highly non-trivial and has a rich structure as a group. Specifically, I define an infinite filtration of Mag(S_g) by subgroups, called the higher order Magnus subgroups, M_k(S_g). I develop methods for generating nontrivial mapping classes in M_k(S_g) for all k and g≥2. I show that for each k the quotient M_k(S_g)/M_{k+1}(S_g) contains a subgroup isomorphic to a lower central series quotient of free groups E(g-1)_k/E(g-1)_{k+1}. Finally I show that for g≥3 the quotient M_k(S_g)/M_{k+1}(S_g) surjects onto an infinite rank torsion free abelian group. To do this, I define a Johnson-type homomorphism on each higher order Magnus subgroup quotient and show it has a highly non-trivial image.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892