Browsing by Author "McHugh, Emily A."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer(AAAS, 2022) Chang, Cheng-Yen; You, Ran; Armstrong, Dominique; Bandi, Ashwini; Cheng, Yi-Ting; Burkhardt, Philip M.; Becerra-Dominguez, Luis; Madison, Matthew C.; Tung, Hui-Ying; Zeng, Zhimin; Wu, Yifan; Song, Lizhen; Phillips, Patricia E.; Porter, Paul; Knight, John M.; Putluri, Nagireddy; Yuan, Xiaoyi; Marcano, Daniela C.; McHugh, Emily A.; Tour, James M.; Catic, Andre; Maneix, Laure; Burt, Bryan M.; Lee, Hyun-Sung; Corry, David B.; Kheradmand, FarrahChronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A–dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non–small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.Item High-surface-area corundum nanoparticles by resistive hotspot-induced phase transformation(Springer Nature, 2022) Deng, Bing; Advincula, Paul A.; Luong, Duy Xuan; Zhou, Jingan; Zhang, Boyu; Wang, Zhe; McHugh, Emily A.; Chen, Jinhang; Carter, Robert A.; Kittrell, Carter; Lou, Jun; Zhao, Yuji; Yakobson, Boris I.; Zhao, Yufeng; Tour, James M.; Smalley-Curl Institute; NanoCarbon Center; Welch Institute for Advanced MaterialsHigh-surface-area α-Al2O3 nanoparticles are used in high-strength ceramics and stable catalyst supports. The production of α-Al2O3 by phase transformation from γ-Al2O3 is hampered by a high activation energy barrier, which usually requires extended high-temperature annealing (~1500 K, > 10 h) and suffers from aggregation. Here, we report the synthesis of dehydrated α-Al2O3 nanoparticles (phase purity ~100%, particle size ~23 nm, surface area ~65 m2 g−1) by a pulsed direct current Joule heating of γ-Al2O3. The phase transformation is completed at a reduced bulk temperature and duration (~573 K, < 1 s) via an intermediate δʹ-Al2O3 phase. Numerical simulations reveal the resistive hotspot-induced local heating in the pulsed current process enables the rapid transformation. Theoretical calculations show the topotactic transition (from γ- to δʹ- to α-Al2O3) is driven by their surface energy differences. The α-Al2O3 nanoparticles are sintered to nanograined ceramics with hardness superior to commercial alumina and approaching that of sapphire.Item Nondestructive flash cathode recycling(Springer Nature, 2024) Chen, Weiyin; Cheng, Yi; Chen, Jinhang; Bets, Ksenia V.; Salvatierra, Rodrigo V.; Ge, Chang; Li, John Tianci; Luong, Duy Xuan; Kittrell, Carter; Wang, Zicheng; McHugh, Emily A.; Gao, Guanhui; Deng, Bing; Han, Yimo; Yakobson, Boris I.; Tour, James M.; Applied Physics Program;Smalley-Curl Institute;NanoCarbon Center;Rice Advanced Materials InstituteEffective recycling of end-of-life Li-ion batteries (LIBs) is essential due to continuous accumulation of battery waste and gradual depletion of battery metal resources. The present closed-loop solutions include destructive conversion to metal compounds, by destroying the entire three-dimensional morphology of the cathode through continuous thermal treatment or harsh wet extraction methods, and direct regeneration by lithium replenishment. Here, we report a solvent- and water-free flash Joule heating (FJH) method combined with magnetic separation to restore fresh cathodes from waste cathodes, followed by solid-state relithiation. The entire process is called flash recycling. This FJH method exhibits the merits of milliseconds of duration and high battery metal recovery yields of ~98%. After FJH, the cathodes reveal intact core structures with hierarchical features, implying the feasibility of their reconstituting into new cathodes. Relithiated cathodes are further used in LIBs, and show good electrochemical performance, comparable to new commercial counterparts. Life-cycle-analysis highlights that flash recycling has higher environmental and economic benefits over traditional destructive recycling processes.Item Oxidation of Hydrogen Sulfide to Polysulfide and Thiosulfate by a Carbon Nanozyme: Therapeutic Implications with an Emphasis on Down Syndrome(Wiley, 2024) Derry, Paul J.; Liopo, Anton V.; Mouli, Karthik; McHugh, Emily A.; Vo, Anh T. T.; McKelvey, Ann; Suva, Larry J.; Wu, Gang; Gao, Yan; Olson, Kenneth R.; Tour, James M.; Kent, Thomas A.; Smalley-Curl Institute; Welch Institute for Advanced Materials; The NanoCarbon CenterHydrogen sulfide (H2S) is a noxious, potentially poisonous, but necessary gas produced from sulfur metabolism in humans. In Down Syndrome (DS), the production of H2S is elevated and associated with degraded mitochondrial function. Therefore, removing H2S from the body as a stable oxide could be an approach to reducing the deleterious effects of H2S in DS. In this report we describe the catalytic oxidation of hydrogen sulfide (H2S) to polysulfides (HS2+n−) and thiosulfate (S2O32−) by poly(ethylene glycol) hydrophilic carbon clusters (PEG-HCCs) and poly(ethylene glycol) oxidized activated charcoal (PEG-OACs), examples of oxidized carbon nanozymes (OCNs). We show that OCNs oxidize H2S to polysulfides and S2O32− in a dose-dependent manner. The reaction is dependent on O2 and the presence of quinone groups on the OCNs. In DS donor lymphocytes we found that OCNs increased polysulfide production, proliferation, and afforded protection against additional toxic levels of H2S compared to untreated DS lymphocytes. Finally, in Dp16 and Ts65DN murine models of DS, we found that OCNs restored osteoclast differentiation. This new action suggests potential facile translation into the clinic for conditions involving excess H2S exemplified by DS.Item Oxidized Activated Charcoal Nanozymes: Synthesis, and Optimization for In Vitro and In Vivo Bioactivity for Traumatic Brain Injury(Wiley, 2024) McHugh, Emily A.; Liopo, Anton V.; Mendoza, Kimberly; Robertson, Claudia S.; Wu, Gang; Wang, Zhe; Chen, Weiyin; Beckham, Jacob L.; Derry, Paul J.; Kent, Thomas A.; Tour, James M.; Smalley-Curl Institute;NanoCarbon Center;Welch Institute for Advanced MaterialsCarbon-based superoxide dismutase (SOD) mimetic nanozymes have recently been employed as promising antioxidant nanotherapeutics due to their distinct properties. The structural features responsible for the efficacy of these nanomaterials as antioxidants are, however, poorly understood. Here, the process–structure–property–performance properties of coconut-derived oxidized activated charcoal (cOAC) nano-SOD mimetics are studied by analyzing how modifications to the nanomaterial's synthesis impact the size, as well as the elemental and electrochemical properties of the particles. These properties are then correlated to the in vitro antioxidant bioactivity of poly(ethylene glycol)-functionalized cOACs (PEG-cOAC). Chemical oxidative treatment methods that afford smaller, more homogeneous cOAC nanoparticles with higher levels of quinone functionalization show enhanced protection against oxidative damage in bEnd.3 murine endothelioma cells. In an in vivo rat model of mild traumatic brain injury (mTBI) and oxidative vascular injury, PEG-cOACs restore cerebral perfusion rapidly to the same extent as the former nanotube-derived PEG-hydrophilic carbon clusters (PEG-HCCs) with a single intravenous injection. These findings provide a deeper understanding of how carbon nanozyme syntheses can be tailored for improved antioxidant bioactivity, and set the stage for translation of medical applications.Item Urban mining by flash Joule heating(Springer Nature, 2021) Deng, Bing; Luong, Duy Xuan; Wang, Zhe; Kittrell, Carter; McHugh, Emily A.; Tour, James M.; Smalley-Curl Institute; NanoCarbon Center; Welch Institute for Advanced MaterialsPrecious metal recovery from electronic waste, termed urban mining, is important for a circular economy. Present methods for urban mining, mainly smelting and leaching, suffer from lengthy purification processes and negative environmental impacts. Here, a solvent-free and sustainable process by flash Joule heating is disclosed to recover precious metals and remove hazardous heavy metals in electronic waste within one second. The sample temperature ramps to ~3400 K in milliseconds by the ultrafast electrical thermal process. Such a high temperature enables the evaporative separation of precious metals from the supporting matrices, with the recovery yields >80% for Rh, Pd, Ag, and >60% for Au. The heavy metals in electronic waste, some of which are highly toxic including Cr, As, Cd, Hg, and Pb, are also removed, leaving a final waste with minimal metal content, acceptable even for agriculture soil levels. Urban mining by flash Joule heating would be 80× to 500× less energy consumptive than using traditional smelting furnaces for metal-component recovery and more environmentally friendly.