Browsing by Author "McCary, Matthew A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation(Springer Nature, 2024) Cheng, Yi; Deng, Bing; Scotland, Phelecia; Eddy, Lucas; Hassan, Arman; Wang, Bo; Silva, Karla J.; Li, Bowen; Wyss, Kevin M.; Ucak-Astarlioglu, Mine G.; Chen, Jinhang; Liu, Qiming; Si, Tengda; Xu, Shichen; Gao, Xiaodong; JeBailey, Khalil; Jana, Debadrita; Torres, Mark Albert; Wong, Michael S.; Yakobson, Boris I.; Griggs, Christopher; McCary, Matthew A.; Zhao, Yufeng; Tour, James M.Per- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative pollutants that can easily accumulate in soil, posing a threat to environment and human health. Current PFAS degradation processes often suffer from low efficiency, high energy and water consumption, or lack of generality. Here, we develop a rapid electrothermal mineralization (REM) process to remediate PFAS-contaminated soil. With environmentally compatible biochar as the conductive additive, the soil temperature increases to >1000 °C within seconds by current pulse input, converting PFAS to calcium fluoride with inherent calcium compounds in soil. This process is applicable for remediating various PFAS contaminants in soil, with high removal efficiencies ( >99%) and mineralization ratios ( >90%). While retaining soil particle size, composition, water infiltration rate, and cation exchange capacity, REM facilitates an increase of exchangeable nutrient supply and arthropod survival in soil, rendering it superior to the time-consuming calcination approach that severely degrades soil properties. REM is scaled up to remediate soil at two kilograms per batch and promising for large-scale, on-site soil remediation. Life-cycle assessment and techno-economic analysis demonstrate REM as an environmentally friendly and economic process, with a significant reduction of energy consumption, greenhouse gas emission, water consumption, and operation cost, when compared to existing soil remediation practices.Item Impacts of habitat connectivity on grassland arthropod metacommunity structure: A field-based experimental test of theory(Wiley, 2023) Bertellotti, Franklin; Sommer, Nathalie R.; Schmitz, Oswald J.; McCary, Matthew A.Metacommunity theory has advanced scientific understanding of how species interactions and spatial processes influence patterns of biodiversity and community structure across landscapes. While the central tenets of metacommunity theory have been promoted as pivotal considerations for conservation management, few field experiments have tested the validity of metacommunity predictions. Here, we tested one key prediction of metacommunity theory—that decreasing habitat connectivity should erode metacommunity structure by hindering species movement between patches. For 2 years, we manipulated an experimental old-field grassland ecosystem via mowing to represent four levels of habitat connectivity: (1) open control, (2) full connectivity, (3) partial connectivity, and (4) no connectivity. Within each treatment plot (10 × 10 m, n = 4 replicates), we measured the abundance and diversity (i.e., alpha and beta) of both flying and ground arthropods using sticky and pitfall traps, respectively. We found that the abundance and diversity of highly mobile flying arthropods were unaffected by habitat connectivity, whereas less mobile ground arthropods were highly impacted. The mean total abundance of ground arthropods was 2.5× and 2× higher in the control and partially connected plots compared to isolated patches, respectively. We also reveal that habitat connectivity affected the trophic interactions of ground arthropods, with predators (e.g., wolf spiders, ground spiders) being highly positively correlated with micro-detritivores (springtails, mites) but not macro-detritivores (millipedes, isopods) as habitat connectivity increased. Together these findings indicate that changes in habitat connectivity can alter the metacommunity structure for less mobile organisms such as ground arthropods. Because of their essential roles in terrestrial ecosystem functioning and services, we recommend that conservationists, restoration practitioners, and land managers include principles of habitat connectivity for ground arthropods when designing biodiversity management programs.Item Invasive plants and their root traits are linked to the homogenization of soil microbial communities across the United States(National Academy of Sciences, 2024) Nunez-Mir, Gabriela C.; McCary, Matthew A.Although the impacts of invasive plants on soil ecosystems are widespread, the role and impacts of invader root traits in structuring microbial communities remain poorly understood. Here, we present a macroecological study investigating how plant invaders and their root traits affect soil microbial communities, spanning data from 377 unique plots across the United States sampled multiple times, totaling 632 sampling events and 94 invasive plant species. We found that native and invasive plants harbor different root traits on average, with invasive plants possessing higher specific root lengths and native plants having higher root tissue density. We also show that soil microbial communities experiencing heavy plant invasions were more similar to each other in composition across ecosystem types and geographical regions than plots with higher proportions of native plants, which displayed highly variable microbial communities across the continent. Root traits of invasive plants in highly invaded plots explained two times more variation in microbial composition than native plants. This work represents an important step toward understanding macroscale and cross-scale patterns of the relationship between plant invasions, root traits, and soil microbial composition. Our findings provide insights into how invasive plants may impact ecosystem functioning at the macroscale via their homogenizing influence on microbial communities.Item Pattern of seasonal variation in rates of predation between spider families is temporally stable in a food web with widespread intraguild predation(Public Library of Science, 2023) Wise, David H.; Mores, Robin M.; O, Jennifer M. Pajda-De La; McCary, Matthew A.Intraguild predation (IGP)–predation between generalist predators (IGPredator and IGPrey) that potentially compete for a shared prey resource–is a common interaction module in terrestrial food webs. Understanding temporal variation in webs with widespread IGP is relevant to testing food web theory. We investigated temporal constancy in the structure of such a system: the spider-focused food web of the forest floor. Multiplex PCR was used to detect prey DNA in 3,300 adult spiders collected from the floor of a deciduous forest during spring, summer, and fall over four years. Because only spiders were defined as consumers, the web was tripartite, with 11 consumer nodes (spider families) and 22 resource nodes: 11 non-spider arthropod taxa (order- or family-level) and the 11 spider families. Most (99%) spider-spider predation was on spider IGPrey, and ~90% of these interactions were restricted to spider families within the same broadly defined foraging mode (cursorial or web-spinning spiders). Bootstrapped-derived confidence intervals (BCI’s) for two indices of web structure, restricted connectance and interaction evenness, overlapped broadly across years and seasons. A third index, % IGPrey (% IGPrey among all prey of spiders), was similar across years (~50%) but varied seasonally, with a summer rate (65%) ~1.8x higher than spring and fall. This seasonal pattern was consistent across years. Our results suggest that extensive spider predation on spider IGPrey that exhibits consistent seasonal variation in frequency, and that occurs primarily within two broadly defined spider-spider interaction pathways, must be incorporated into models of the dynamics of forest-floor food webs.