Browsing by Author "McAndrews, Kathleen M."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2(Springer Nature, 2022) El-Shennawy, Lamiaa; Hoffmann, Andrew D.; Dashzeveg, Nurmaa Khund; McAndrews, Kathleen M.; Mehl, Paul J.; Cornish, Daphne; Yu, Zihao; Tokars, Valerie L.; Nicolaescu, Vlad; Tomatsidou, Anastasia; Mao, Chengsheng; Felicelli, Christopher J.; Tsai, Chia-Feng; Ostiguin, Carolina; Jia, Yuzhi; Li, Lin; Furlong, Kevin; Wysocki, Jan; Luo, Xin; Ruivo, Carolina F.; Batlle, Daniel; Hope, Thomas J.; Shen, Yang; Chae, Young Kwang; Zhang, Hui; LeBleu, Valerie S.; Shi, Tujin; Swaminathan, Suchitra; Luo, Yuan; Missiakas, Dominique; Randall, Glenn C.; Demonbreun, Alexis R.; Ison, Michael G.; Kalluri, Raghu; Fang, Deyu; Liu, HuipingThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, β, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.Item Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates(Public Library of Science, 2020) McGrail, Daniel J.; Dai, Jianli; McAndrews, Kathleen M.; Kalluri, RaghuThe outbreak the SARS-CoV-2 (CoV-2) virus has resulted in over 6.5 million cases of COVID19, greatly stressing global healthcare infrastructure. Lacking medical prophylactic measures to combat disease spread, many nations have adopted social distancing policies in order to mitigate transmission of CoV-2. While mathematical models have suggested the efficacy of social distancing to curb the spread of CoV-2, there is a lack of systematic studies to quantify the real-world efficacy of these approaches. Here, we first demonstrate that implementation of social distancing policies in US states corresponded with a reduction in COVID19 spread rates, and that the reduction in spread rate is proportional to the average change in mobility. We validate this observation on a worldwide scale by analyzing COVID19 spread rate in 134 nations with varying social distancing policies. Globally, we find that social distancing policies significantly reduced the COVID19 spread rate, with resulting in an estimated 65% reduction (95% CI = 39–80%) in new COVID19 cases over a two week time period. These data suggest that social distancing policies may be a powerful tool to prevent spread of COVID19 in real-world scenarios.Item Exosomes modified with anti-MEK1 siRNA lead to an effective silencing of triple negative breast cancer cells(Elsevier, 2023) Ferreira, Débora; Santos-Pereira, Cátia; Costa, Marta; Afonso, Julieta; Yang, Sujuan; Hensel, Janine; McAndrews, Kathleen M.; Longatto-Filho, Adhemar; Fernandes, Rui; Melo, Joana B.; Baltazar, Fátima; Moreira, João N.; Kalluri, Raghu; Rodrigues, Ligia R.Triple negative breast cancer (TNBC) is a highly heterogenous disease not sensitive to endocrine or HER2 therapy and standardized treatment regimens are still missing. Therefore, development of novel TNBC treatment approaches is of utmost relevance. Herein, the potential of MAPK/ERK downregulation by RNAi-based therapeutics in a panel of mesenchymal stem-like TNBC cell lines was uncovered. Our data revealed that suppression of one of the central nodes of this signaling pathway, MEK1, affects proliferation, migration, and invasion of TNBC cells, that may be explained by the reversion of the epithelial-mesenchymal transition phenotype, which is facilitated by the MMP-2/MMP-9 downregulation. Moreover, an exosome-based system was successfully generated for the siRNA loading (iExoMEK1). Our data suggested absence of modification of the physical properties and general integrity of the iExoMEK1 comparatively to the unmodified counterparts. Such exosome-mediated downregulation of MEK1 led to a tumor regression accompanied by a decrease of angiogenesis using the chick chorioallantoic-membrane model. Our results highlight the potential of the targeting of MAPK/ERK cascade as a promising therapeutic approach against TNBC.Item Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity(American Society for Clinical Investigation, 2020) McAndrews, Kathleen M.; Dowlatshahi, Dara P.; Dai, Jianli; Becker, Lisa M.; Hensel, Janine; Snowden, Laura M.; Leveille, Jennifer M.; Brunner, Michael R.; Holden, Kylie W.; Hopkins, Nikolas S.; Harris, Alexandria M.; Kumpati, Jerusha; Whitt, Michael A.; Lee, J. Jack; Ostrosky-Zeichner, Luis L.; Papanna, Ramesha; LeBleu, Valerie S.; Allison, James P.; Kalluri, RaghuEvaluation of potential immunity against the novel severe acute respiratory syndrome (SARS) coronavirus that emerged in 2019 (SARS-CoV-2) is essential for health, as well as social and economic recovery. Generation of antibody response to SARS-CoV-2 (seroconversion) may inform on acquired immunity from prior exposure, and antibodies against the SARS-CoV-2 spike protein receptor binding domain (S-RBD) are speculated to neutralize virus infection. Some serology assays rely solely on SARS-CoV-2 nucleocapsid protein (N-protein) as the antibody detection antigen; however, whether such immune responses correlate with S-RBD response and COVID-19 immunity remains unknown. Here, we generated a quantitative serological ELISA using recombinant S-RBD and N-protein for the detection of circulating antibodies in 138 serial serum samples from 30 reverse transcription PCR–confirmed, SARS-CoV-2–hospitalized patients, as well as 464 healthy and non–COVID-19 serum samples that were collected between June 2017 and June 2020. Quantitative detection of IgG antibodies against the 2 different viral proteins showed a moderate correlation. Antibodies against N-protein were detected at a rate of 3.6% in healthy and non–COVID-19 sera collected during the pandemic in 2020, whereas 1.9% of these sera were positive for S-RBD. Approximately 86% of individuals positive for S-RBD–binding antibodies exhibited neutralizing capacity, but only 74% of N-protein–positive individuals exhibited neutralizing capacity. Collectively, our studies show that detection of N-protein–binding antibodies does not always correlate with presence of S-RBD–neutralizing antibodies and caution against the extensive use of N-protein–based serology testing for determination of potential COVID-19 immunity.Item High throughput and rapid isolation of extracellular vesicles and exosomes with purity using size exclusion liquid chromatography(Elsevier, 2024) Kapoor, Kshipra S.; Harris, Kristen; Arian, Kent A.; Ma, Lihua; Schueng Zancanela, Beatriz; Church, Kaira A.; McAndrews, Kathleen M.; Kalluri, RaghuExtracellular vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer advantages compared to synthetic vesicles for delivery of various drugs; however, limitations in segregating EVs from other particles and soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (88.47 %) and rapid (<20 min) EV isolation method termed size exclusion – fast protein liquid chromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum samples. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs. The high-yield nature of SE-FPLC allows for easy industrial scaling up of EV production for various clinical utilities. SE-FPLC also enables analysis of small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical translation.Item Morphological diversity of extracellular vesicles revealed by cryo-electron microscopy(ASEMV/AAEV, 10/1/2022) Kapoor, Kshipra S.; McAndrews, Kathleen M.; Biswal, Lisa S.; Kalluri, RaghuIntroduction: Exosomes are extracellular vesicles 80-150 nm in diameter, containing proteins, mRNAs, microRNAs, and lipids reflecting the parent cell. While there has been an extensive characterization of the cargo incorporated in exosomes, a detailed morphological analysis of exosomes purified by various isolation techniques has not been performed. Objective: We aimed to determine the heterogeneity of exosomes morphology and if such morphological features are conserved across sample types. Methods: Our study used Cryogenic Electron Microscopy (Cryo-EM) to examine exosome size and morphology. Results: Our results revealed significant diversity in extracellular vesicle morphology independent of the isolation method, suggesting that morphological subpopulations of these vesicles exist. Based on their shape, our analysis classified exosomes into seven categories. In addition, we developed a semi-automatic image analysis framework to accurately characterize exosome attributes and distribution to facilitate reliable quantification of specific bio-nanoparticle features in Cryo-EM micrographs. Conclusions: Morphological features of exosomes inform their biophysical properties, which influence both biodistribution and biological activity in vivo. Our data demonstrating the innate morphological diversity of exosomes may have implications for improving the specificity and precision of exosome-delivered therapeutics. Conflict of interest: R.K. and MD Anderson Cancer Center hold patents in exosome biology and are stock equity holders in Codiak Biosciences Inc. R.K. is a consultant and a scientific advisor of Codiak Biosciences Inc.Item Protection against SARS-CoV-2 by BCG vaccination is not supported by epidemiological analyses(Springer Nature, 2020) Hensel, Janine; McAndrews, Kathleen M.; McGrail, Daniel J.; Dowlatshahi, Dara P.; LeBleu, Valerie S.; Kalluri, RaghuThe Bacillus Calmette-Guerin (BCG) vaccine provides protection against tuberculosis (TB), and is thought to provide protection against non-TB infectious diseases. BCG vaccination has recently been proposed as a strategy to prevent infection with SARS-CoV-2 (CoV-2) to combat the COVID-19 outbreak, supported by its potential to boost innate immunity and initial epidemiological analyses which observed reduced severity of COVID-19 in countries with universal BCG vaccination policies. Seventeen clinical trials are currently registered to inform on the benefits of BCG vaccinations upon exposure to CoV-2. Numerous epidemiological analyses showed a correlation between incidence of COVID-19 and BCG vaccination policies. These studies were not systematically corrected for confounding variables. We observed that after correction for confounding variables, most notably testing rates, there was no association between BCG vaccination policy and COVD-19 spread rate or percent mortality. Moreover, we found variables describing co-morbidities, including cardiovascular death rate and smoking prevalence, were significantly associated COVID-19 spread rate and percent mortality, respectively. While reporting biases may confound our observations, our epidemiological findings do not provide evidence to correlate overall BCG vaccination policy with the spread of CoV-2 and its associated mortality.Item Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta(Springer Nature, 2021) Chen, Yang; Yang, Sujuan; Lovisa, Sara; Ambrose, Catherine G.; McAndrews, Kathleen M.; Sugimoto, Hikaru; Kalluri, RaghuType I collagen (Col1) is the most abundant protein in mammals. Col1 contributes to 90% of the total organic component of bone matrix. However, the precise cellular origin and functional contribution of Col1 in embryogenesis and bone formation remain unknown. Single-cell RNA-sequencing analysis identifies Fap+ cells and Fsp1+ cells as the major contributors of Col1 in the bone. We generate transgenic mouse models to genetically delete Col1 in various cell lineages. Complete, whole-body Col1 deletion leads to failed gastrulation and early embryonic lethality. Specific Col1 deletion in Fap+ cells causes severe skeletal defects, with hemorrhage, edema, and prenatal lethality. Specific Col1 deletion in Fsp1+ cells results in Osteogenesis Imperfecta-like phenotypes in adult mice, with spontaneous fractures and compromised bone healing. This study demonstrates specific contributions of mesenchymal cell lineages to Col1 production in organogenesis, skeletal development, and bone formation/repair, with potential insights into cell-based therapy for patients with Osteogenesis Imperfecta.Item Unique somatic variants in DNA from urine exosomes of individuals with bladder cancer(Elsevier, 2021) Zhou, Xunian; Kurywchak, Paul; Wolf-Dennen, Kerri; Che, Sara P. Y.; Sulakhe, Dinanath; D’Souza, Mark; Xie, Bingqing; Maltsev, Natalia; Gilliam, T. Conrad; Wu, Chia-Chin; McAndrews, Kathleen M.; LeBleu, Valerie S.; McConkey, David J.; Volpert, Olga V.; Pretzsch, Shanna M.; Czerniak, Bogdan A.; Dinney, Colin P.; Kalluri, RaghuBladder cancer (BC), a heterogeneous disease characterized by high recurrence rates, is diagnosed and monitored by cystoscopy. Accurate clinical staging based on biopsy remains a challenge, and additional, objective diagnostic tools are needed urgently. We used exosomal DNA (exoDNA) as an analyte to examine cancer-associated mutations and compared the diagnostic utility of exoDNA from urine and serum of individuals with BC. In contrast to urine exosomes from healthy individuals, urine exosomes from individuals with BC contained significant amounts of DNA. Whole-exome sequencing of DNA from matched urine and serum exosomes, bladder tumors, and normal tissue (peripheral blood mononuclear cells) identified exonic and 3′ UTR variants in frequently mutated genes in BC, detectable in urine exoDNA and matched tumor samples. Further analyses identified somatic variants in driver genes, unique to urine exoDNA, possibly because of the inherent intra-tumoral heterogeneity of BC, which is not fully represented in random small biopsies. Multiple variants were also found in untranslated portions of the genome, such as microRNA (miRNA)-binding regions of the KRAS gene. Gene network analyses revealed that exoDNA is associated with cancer, inflammation, and immunity in BC exosomes. Our findings show utility of exoDNA as an objective, non-invasive strategy to identify novel biomarkers and targets for BC.