Browsing by Author "Maruyama, Benji"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications(American Chemical Society, 2018) Rao, Rahul; Pint, Cary L.; Islam, Ahmad E.; Weatherup, Robert S.; Hofmann, Stephan; Meshot, Eric R.; Wu, Fanqi; Zhou, Chongwu; Dee, Nicholas; Amama, Placidus B.; Carpena-Nuñez, Jennifer; Shi, Wenbo; Plata, Desiree L.; Penev, Evgeni S.; Yakobson, Boris I.; Balbuena, Perla B.; Bichara, Christophe; Futaba, Don N.; Noda, Suguru; Shin, Homin; Kim, Keun Su; Simard, Benoit; Mirri, Francesca; Pasquali, Matteo; Fornasiero, Francesco; Kauppinen, Esko I.; Arnold, Michael; Cola, Baratunde A.; Nikolaev, Pavel; Arepalli, Sivaram; Cheng, Hui-Ming; Zakharov, Dmitri N.; Stach, Eric A.; Zhang, Jin; Wei, Fei; Terrones, Mauricio; Geohegan, David B.; Maruyama, Benji; Maruyama, Shigeo; Li, Yan; Adams, W. Wade; Hart, A. JohnAdvances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.Item Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity(AAAS, 2013) Behabtu, Natnael; Young, Colin C.; Tsentalovich, Dmitri E.; Kleinerman, Olga; Wang, Xuan; Ma, Anson W.K.; Bengio, E. Amram; ter Waarbeek, Ron F.; de Jong, Jorrit J.; Hoogerwerf, Ron E.; Fairchild, Steven B.; Ferguson, John B.; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J.; Pasquali, Matteo; Richard E. Smalley Institute for Nanoscale Science and TechnologyBroader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.Item Versatile acid solvents for pristine carbon nanotube assembly(AAAS, 2022) Headrick, Robert J.; Williams, Steven M.; Owens, Crystal E.; Taylor, Lauren W.; Dewey, Oliver S.; Ginestra, Cedric J.; Liberman, Lucy; Ya’akobi, Asia Matatyaho; Talmon, Yeshayahu; Maruyama, Benji; McKinley, Gareth H.; Hart, A. John; Pasquali, Matteo; The Smalley Institute for Nanoscale Science and Technology; The Carbon HubChlorosulfonic acid and oleum are ideal solvents for enabling the transformation of disordered carbon nanotubes (CNTs) into precise and highly functional morphologies. Currently, processing these solvents using extrusion techniques presents complications due to chemical compatibility, which constrain equipment and substrate material options. Here, we present a novel acid solvent system based on methanesulfonic or p-toluenesulfonic acids with low corrosivity, which form true solutions of CNTs at concentrations as high as 10 g/liter (≈0.7 volume %). The versatility of this solvent system is demonstrated by drop-in application to conventional manufacturing processes such as slot die coating, solution spinning continuous fibers, and 3D printing aerogels. Through continuous slot coating, we achieve state-of-the-art optoelectronic performance (83.6 %T and 14 ohm/sq) at industrially relevant production speeds. This work establishes practical and efficient means for scalable processing of CNT into advanced materials with properties suitable for a wide range of applications.