Browsing by Author "Marshall, Alan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Context-Aware Trust Framework for Resilient Distributed Cooperative Spectrum Sensing in Dynamic Settings(IEEE, 2017) Vosoughi, Aida; Cavallaro, Joseph R.; Marshall, AlanCognitive radios enable dynamic spectrum access where secondary users (SUs) are allowed to operate on the licensed spectrum bands on an opportunistic noninterference basis. Cooperation among the SUs for spectrum sensing is essential for environments with deep shadows. In this paper, we study the adverse effect of insistent spectrum sensing data falsification (ISSDF) attack on iterative distributed cooperative spectrum sensing. We show that the existing trust management schemes are not adequate in mitigating ISSDF attacks in dynamic settings where the primary user (PU) of the band frequently transitions between active and inactive states. We propose a novel context-aware distributed trust framework for cooperative spectrum sensing in mobile cognitive radio ad hoc networks (CRAHN) that effectively alleviates different types of ISSDF attacks (Always-Yes, Always-No, and fabricating) in dynamic scenarios. In the proposed framework, the SU nodes evaluate the trustworthiness of one another based on the two possible contexts in which they make observations from each other: PU absent context and PU present context. We evaluate the proposed context-aware scheme and compare it against the existing context-oblivious trust schemes using theoretical analysis and extensive simulations of realistic scenarios of mobile CRAHNs operating in TV white space. We show that in the presence of a large set of attackers (as high as 60% of the network), the proposed context-aware trust scheme successfully mitigates the attacks and satisfy the false alarm and missed-detection rates of 10−2 and lower. Moreover, we show that the proposed scheme is scalable in terms of attack severity, SU network density, and the distance of the SU network to the PU transmitter.Item Toward Length-Versatile and Noise-Robust Radio Frequency Fingerprint Identification(IEEE, 2023) Shen, Guanxiong; Zhang, Junqing; Marshall, Alan; Valkama, Mikko; Cavallaro, Joseph R.Radio frequency fingerprint identification (RFFI) can classify wireless devices by analyzing the signal distortions caused by intrinsic hardware impairments. Recently, state-of-the-art neural networks have been adopted for RFFI. However, many neural networks, e.g., multilayer perceptron (MLP) and convolutional neural network (CNN), require fixed-size input data. In addition, many IoT devices work in low signal-to-noise ratio (SNR) scenarios but the RFFI performance in such scenarios is often unsatisfactory. In this paper, we analyze the reason why MLP- and CNN-based RFFI systems are constrained by the input size. To overcome this, we propose four neural networks that can process signals of variable lengths, namely flatten-free CNN, long short-term memory (LSTM) network, gated recurrent unit (GRU) network, and transformer. We adopt data augmentation during training which can significantly improve the model’s robustness to noise. We compare two augmentation schemes, namely offline and online augmentation. The results show the online one performs better. During the inference, a multi-packet inference approach is further leveraged to improve the classification accuracy in low SNR scenarios. We take LoRa as a case study and evaluate the system by classifying 10 commercial-off-the-shelf LoRa devices in various SNR conditions. The online augmentation can boost the low-SNR classification accuracy by up to 50% and the multi-packet inference approach can further increase the accuracy by over 20%.