Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Marinenko, Tatiana"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    High-distance splittings of 3-manifolds
    (2003) Marinenko, Tatiana; Hempel, John
    A Heegaard splitting (S; V1, V 2) for a closed 3-manifold M is a representation M = V1 ∪S V2 where V1 and V 2 are handlebodies and S = ∂V 1 = ∂V2 = V 1 ∩ V2. The distance of a Heegaard splitting (S; V1, V2) is the length of a shortest path in the curve complex of S which connects the subcomplexes KV1 and KV2 , where KVi is the subcomplex consisting of all vertices that correspond to simple closed curves bounding disks in Vi for i = 1, 2. In this work we explicitly define an infinite sequence of 3-manifolds {Mn} via their representative Heegaard diagrams by iterating a 2-fold Dehn twist operator. Using purely combinatorial techniques we are able to prove that for any n the distance of the Heegaard Splitting of Mn is at least n. Moreover, we show that pi1(Mn) surjects onto pi1(Mn-1 ). Hence, if we assume that M0 has a non-trivial boundary, i.e. first Betti number beta1( M0) > 0, then it follows that beta1( Mn) > 0 for all n ≥ 1. Therefore, the sequence {Mn} consists of Haken 3-manifolds for n ≥ 1 and hyperbolizable 3-manifolds for n ≥ 3.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892