Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Marcano Quevedo, Daniela"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Synthesis, Characterization, and Biological uses of Carbon Nanoparticles
    (2013-07-24) Marcano Quevedo, Daniela; Tour, James M.; Billups, W. Edward; Mikos, Antonios G.
    Many diseases have been associated with oxidative stress (OS) which is caused when the production of reactive oxygen species (ROS), such as superoxide (O2•-) and hydroxyl radical (•OH), overcome the scavenging efficiency of living organisms. It is known that ROS production is worsened during traumas related to ischemic events and subsequent reperfusion in which the treatment with fast and effective antioxidants is critical to prevent cell and tissue damage. PEG-HCCs are carbon nanoparticles that showed O2•- and •OH scavenging properties according to electron paramagnetic resonance (EPR) experiments and peroxyl scavenging properties based on oxygen radical absorbance capacity (ORAC) assays. The O2•- quenching capability was also examined in vivo using a mild traumatic brain injury (mTBI) model complicated with hypotension. As result of the PEG-HCCs treatment, the cerebral blood flow (CBF) was restored while normalizing O2•- and nitric oxide (NO•) levels, primarily in the cerebral vasculature
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892