Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mao, Nannan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics
    (Springer Nature, 2023) Shi, Chuqiao; Mao, Nannan; Zhang, Kena; Zhang, Tianyi; Chiu, Ming-Hui; Ashen, Kenna; Wang, Bo; Tang, Xiuyu; Guo, Galio; Lei, Shiming; Chen, Longqing; Cao, Ye; Qian, Xiaofeng; Kong, Jing; Han, Yimo
    Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.
  • Loading...
    Thumbnail Image
    Item
    Growth of Large-Sized 2D Ultrathin SnSe Crystals with In-Plane Ferroelectricity
    (Wiley, 2023) Chiu, Ming-Hui; Ji, Xiang; Zhang, Tianyi; Mao, Nannan; Luo, Yue; Shi, Chuqiao; Zheng, Xudong; Liu, Hongwei; Han, Yimo; Wilson, William L.; Luo, Zhengtang; Tung, Vincent; Kong, Jing
    Tin (II) selenide (SnSe) is an emerging 2D material with many intriguing properties, such as record-high thermoelectric figure of merit (ZT), purely in-plane ferroelectricity, and excellent nonlinear optical properties. To explore these functional properties and related applications, a crucial step is to develop controllable routes to synthesize large-area, ultrathin, and high-quality SnSe crystals. Physical vapor deposition (PVD) constitutes a reliable method to synthesize 2D SnSe, however, effects of various growth parameters have not yet been systematically investigated, and current PVD-synthesized flakes are often thick (>10 nm) with small lateral sizes (<10 µm). In this work, high-quality 2D SnSe crystals are synthesized via low-pressure PVD, which display in-plane ferroelectric domains observed by piezoresponse force microscopy and polarization-dependent reflection spectroscopy. Detailed studies regarding the roles of various parameters are further carried out, including substrate pre-annealing, growth duration, temperature, and pressure, which enable to rationally optimize the growth and obtain 2D SnSe crystals with lateral sizes up to ≈23.0 µm and thicknesses down to ≈2.0 nm (3–4 layers). This work paves the way for the controlled growth of large-area 2D SnSe, facilitating the future exploration of many interesting multiferroic properties and applications with atomic thickness.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892