Browsing by Author "Lynn, J.W."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item An itinerant antiferromagnetic metal without magnetic constituents(Nature Publishing Group, 2015) Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J.W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M.C.; Uemura, Y.J.; Morosan, E.The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.Item Band Jahn-Teller structural phase transition inᅠY2In(American Physical Society, 2018) Svanidze, E.; Georgen, C.; Hallas, A.M.; Huang, Q.; Santiago, J.M.; Lynn, J.W.; Morosan, E.The number of paramagnetic materials that undergo a structural phase transition is rather small, which can perhaps explain the limited understanding of the band Jahn-Teller mechanism responsible for this effect. Here we present a structural phase transition observed in paramagnetic Y2In at temperature T0=250±5 K. Below T0, the high-temperature hexagonal P63/mmc phase transforms into the low-temperature orthorhombic Pnma phase. This transition is accompanied by an unambiguous thermal hysteresis of about 10 K, observed in both magnetic susceptibility M/H(T) and resistivity ρ(T), indicating a first-order transition. Band structure calculations suggest a band Jahn-Teller mechanism, during which the degeneracy of electron bands close to the Fermi energy is broken. We establish that this structural phase transition does not have a magnetic component; however, the possibility of a charge density wave formation has not been eliminated.Item Low-carrier density and fragile magnetism in a Kondo lattice system(American Physical Society, 2019) Rai, Binod K.; Oswald, Iain W.H.; Ban, Wenjing; Huang, C.-L.; Loganathan, V.; Hallas, A.M.; Wilson, M.N.; Luke, G.M.; Harriger, L.; Huang, Q.; Li, Y.; Dzsaber, Sami; Chan, Julia Y.; Wang, N.L.; Paschen, Silke; Lynn, J.W.; Nevidomskyy, Andriy H.; Dai, Pengcheng; Si, Q.; Morosan, E.; Rice Center for Quantum MaterialsKondo-based semimetals and semiconductors are of extensive current interest as a viable platform for strongly correlated states in the dilute carrier limit. It is thus important to explore the routes to understand such systems. One established pathway is through the Kondo effect in metallic nonmagnetic analogs, in the so called half-filling case of one conduction electron and oneᅠ4fᅠelectron per site. Here, we demonstrate that Kondo-based semimetals develop out of conduction electrons with a low-carrier density in the presence of an even number of rare-earth sites. We do so by studying the Kondo materialᅠYb3Ir4Ge13ᅠalong with its closed-4f-shell counterpart,ᅠLu3Ir4Ge13. Through magnetotransport, optical conductivity, and thermodynamic measurements, we establish that the correlated semimetallic state ofᅠYb3Ir4Ge13ᅠbelow its Kondo temperature originates from the Kondo effect of a low-carrier conduction-electron background. In addition, it displays fragile magnetism at very low temperatures, which in turn, can be tuned to a Griffiths-phase-like regime through Lu-for-Yb substitution. These findings are connected with recent theoretical studies in simplified models. Our results can pave the way to exploring strong correlation physics in a semimetallic environment.Item Neutron spin resonance as a probe of superconducting gap anisotropy in partially detwinned electron underdoped ${\mathrm{NaFe}}_{0.985}{\mathrm{Co}}_{0.015}\mathrm{As}$(American Physical Society, 2015) Zhang, Chenglin; Park, J.T.; Lu, Xingye; Yu, Rong; Li, Yu; Zhang, Wenliang; Zhao, Yang; Lynn, J.W.; Si, Qimiao; Dai, PengchengWe use inelastic neutron scattering (INS) to study the spin excitations in partially detwinned NaFe0.985Co0.015As which has coexisting static antiferromagnetic (AF) order and superconductivity (Tc=15 K, TN=30 K). In previous INS work on a twinned sample, spin excitations formed a dispersive sharp resonance near Er1=3.25 meV and a broad dispersionless mode at Er1=6 meV at the AF ordering wave vector QAF=Q1=(1,0) and its twinned domain Q2=(0,1). For partially detwinned NaFe0.985Co0.015As with the static AF order mostly occurring at QAF=(1,0), we still find a double resonance at both wave vectors with similar intensity. Since Q1=(1,0) characterizes the explicit breaking of the spin rotational symmetry associated with the AF order, these results indicate that the double resonance cannot be due to the static and fluctuating AF orders but originate from the superconducting gap anisotropy.Item Neutron spin resonance as a probe of superconducting gap anisotropy in partially detwinned electron underdoped NaFe0.985Co0.015As(American Physical Society, 2015) Zhang, Chenglin; Park, J.T.; Lu, Xingye; Yu, Rong; Li, Yu; Zhang, Wenliang; Zhao, Yang; Lynn, J.W.; Si, Qimiao; Dai, PengchengWe use inelastic neutron scattering (INS) to study the spin excitations in partially detwinned NaFe0.985Co0.015As which has coexisting static antiferromagnetic (AF) order and superconductivity (Tc=15 K, TN=30 K). In previous INS work on a twinned sample, spin excitations formed a dispersive sharp resonance near Er1=3.25ᅠmeV and a broad dispersionless mode at Er1=6 meV at the AF ordering wave vector QAF=Q1=(1,0) and its twinned domain Q2=(0,1). For partially detwinned NaFe0.985Co0.015As with the static AF order mostly occurring at QAF=(1,0), we still find a double resonance at both wave vectors with similar intensity. Since Q1=(1,0) characterizes the explicit breaking of the spin rotational symmetry associated with the AF order, these results indicate that the double resonance cannot be due to the static and fluctuating AF orders but originate from the superconducting gap anisotropy.Item Quantum critical point in the Sc-doped itinerant antiferromagnet TiAu(American Physical Society, 2017) Svanidze, E.; Besara, T.; Wang, J.K.; Geiger, D.; Prochaska, L.; Santiago, J.M.; Lynn, J.W.; Paschen, S.; Siegrist, T.; Morosan, E.We present an experimental realization of a quantum critical point in an itinerant antiferromagnet composed of nonmagnetic constituents, TiAu. By partially substituting Ti with Sc in Ti 1 − x Sc x Au , a doping amount of x c = 0.13 ± 0.01 induces a quantum critical point with minimal disorder effects. The accompanying non-Fermi liquid behavior is observed in both the resistivity ρ ∝ T and specific heat C p / T ∝ − ln T , characteristic of a two-dimensional antiferromagnet. The quantum critical point is accompanied by an enhancement of the spin fluctuations, as indicated by the diverging Sommerfeld coefficient γ at x = x c .Item Spin waves and spatially anisotropic exchange interactions in the $S=2$ stripe antiferromagnet ${\mathrm{Rb}}_{0.8}{\mathrm{Fe}}_{1.5}{\mathrm{S}}_{2}$(American Physical Society, 2015) Wang, Meng; Valdivia, P.; Yi, Ming; Chen, J.X.; Zhang, W.L.; Ewings, R.A.; Perring, T.G.; Zhao, Yang; Harriger, L.W.; Lynn, J.W.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Yao, D. X.; Birgeneau, R.J.An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb0.8Fe1.5S2 throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Hamiltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of 27.6±4.2μ2B/Fe, consistent with S≈2. Unlike XFe2As2 (X=Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb0.8Fe1.5S2 is a Mott-like insulator with fully localized 3d electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.Item Spin waves and spatially anisotropic exchange interactions in the S=2 stripe antiferromagnet Rb0.8Fe1.5S2(American Physical Society, 2015) Wang, Meng; Valdivia, P.; Yi, Ming; Chen, J.X.; Zhang, W.L.; Ewings, R.A.; Perring, T.G.; Zhao, Yang; Harriger, L.W.; Lynn, J.W.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Yao, D.X.; Birgeneau, R.J.An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb0.8Fe1.5S2 throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Hamiltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of 27.6±4.2μ2B/Fe, consistent with S≈2. Unlike XFe2As2 (X=Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb0.8Fe1.5S2 is a Mott-like insulator with fully localized 3d electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.