Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lu, Xinmin"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Climate warming increases biological control agent impact on a non-target species
    (Wiley, 2015) Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing
    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.
  • Loading...
    Thumbnail Image
    Item
    Latitudinal variation in soil biota: testing the biotic interaction hypothesis with an invasive plant and a native congener
    (Springer Nature, 2018) Lu, Xinmin; He, Minyan; Ding, Jianqing; Siemann, Evan
    Soil biota community structure can change with latitude, but the effects of changes on native plants, invasive plants, and their herbivores remain unclear. Here, we examined latitudinal variation in the soil biota community associated with the invasive plant Alternanthera philoxeroides and its native congener A. sessilis, and the effects of soil biota community variation on these plants and the beetle Agasicles hygrophila. We characterized the soil bacterial and fungal communities and root-knot nematodes of plant rhizospheres collected from 22 °N to 36.6 °N in China. Soil biota community structure changed with latitude as a function of climate and soil properties. Root-knot nematode abundance and potential soil fungal pathogen diversity (classified with FUNGuild) decreased with latitude, apparently due to higher soil pH and lower temperatures. A greenhouse experiment and lab bioassay showed native plant mass, seed production, and mass of beetles fed native foliage increased with soil collection latitude. However, there were no latitudinal patterns for the invasive plant. These results suggest that invasive and native plants and, consequently, their herbivores have different responses to latitudinal changes in soil-borne enemies, potentially creating spatial variation in enemy release or biotic resistance. This highlights the importance of linking above- and below-ground multitrophic interactions to explore the role of soil biota in non-native plant invasions with a biogeographic approach.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892