Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lu, Karen"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Human Omental-Derived Adipose Stem Cells Increase Ovarian Cancer Proliferation, Migration, and Chemoresistance
    (Public Library of Science, 2013) Nowicka, Aleksandra; Marini, Frank C.; Solley, Travis N.; Elizondo, Paula B.; Zhang, Yan; Sharp, Hadley J.; Broaddus, Russell; Kolonin, Mikhail; Mok, Samuel C.; Thompson, Melissa S.; Woodward, Wendy A.; Lu, Karen; Salimian, Bahar; Nagrath, Deepak; Klopp, Ann H.
    Objectives: Adipose tissue contains a population of multipotent adipose stem cells (ASCs) that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination. Materials and Methods: We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5) and without (O-ASC1) omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment. Results: O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries. Conclusions: ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.
  • Loading...
    Thumbnail Image
    Item
    Increasing Health Risks During Outdoor Sports Due To Climate Change in Texas: Projections Versus Attitudes
    (Wiley, 2022) Dee, Sylvia G.; Nabizadeh, Ebrahim; Nittrouer, Christine L.; Baldwin, Jane W.; Li, Chelsea; Gaviria, Lizzy; Guo, Selena; Lu, Karen; Saunders-Shultz, Beck Miguel; Gurwitz, Emily; Samarth, Gargi; Weinberger, Kate R.
    Extreme heat is a recognized threat to human health. This study examines projected future trends of multiple measures of extreme heat across Texas throughout the next century, and evaluates the expected climate changes alongside Texas athletic staff (coach and athletic trainer) attitudes toward heat and climate change. Numerical climate simulations from the recently published Community Earth System Model version 2 and the Climate Model Intercomparison Project were used to predict changes in summer temperatures, heat indices, and wet bulb temperatures across Texas and also within specific metropolitan areas. A survey examining attitudes toward the effects of climate change on athletic programs and student athlete health was also distributed to high-school and university athletic staff. Heat indices are projected to increase beyond what is considered healthy/safe limits for outdoor sports activity by the mid-to-late 21st century. Survey results reveal a general understanding and acceptance of climate change and a need for adjustments in accordance with more dangerous heat-related events. However, a portion of athletic staff still do not acknowledge the changing climate and its implications for student athlete health and their athletic programs. Enhancing climate change and health communication across the state may initiate important changes to athletic programs (e.g., timing, duration, intensity, and location of practices), which should be made in accordance with increasingly dangerous temperatures and weather conditions. This work employs a novel interdisciplinary approach to evaluate future heat projections alongside attitudes from athletic communities toward climate change.
  • Loading...
    Thumbnail Image
    Item
    Snapshot ARG Removal Rates across Wastewater Treatment Plants Are Not Representative Due to Diurnal Variations
    (American Chemical Society, 2023) Lou, Esther G.; Ali, Priyanka; Lu, Karen; Kalvapalle, Prashant; Stadler, Lauren B.
    To evaluate the threat of the environmental dissemination of antibiotic resistance associated with wastewater treatment plants (WWTPs), the removal efficiency of antibiotic resistance genes (ARGs) during wastewater treatment needs to be assessed. The sample collection strategy is one factor that is often overlooked in study design and most studies on ARGs in wastewater perform grab sampling. Here, we hypothesized that wastewater sampling (i.e., grab and composite sampling) influences the observed ARG concentrations and calculated removal rates across WWTPs. We compared the removal rates calculated based on the two different sampling methods for several genes, including some clinically relevant ARGs (blaNDM-1, blaOXA-1, MCR-1, MCR-5, MCR-10, and qnrA). We conducted summer and winter 24 h sampling campaigns where grab samples were collected every 2 h from the influent, secondary effluent, and final effluent. The snapshot removal rate of each target gene calculated based on the 12 grab samples fluctuated by 0.5–1.6 log in the winter and 0.9–2.7 log in the summer, indicating diurnal variation. Overall, for each target gene, the removal rates calculated based on 24 h composite samples were approximately equal to the median of the 12 snapshot removal rates. Our study confirms the importance of using composite samples to monitor ARGs in wastewater.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892