Browsing by Author "Lu, Benjamin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles(National Academy of Sciences, 2013) Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.; Laboratory for Nanophotonics; Rice Quantum Institute; Bioengineering; Electrical and Computer Engineering; Civil and Environmental Engineering; Mechanical Engineering; Physics and AstronomyThe lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.Item Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels(The American Physical Society, 2009) Murakami, Yoichi; Lu, Benjamin; Kazaoui, Said; Minami, Nobutsugu; Okubo, Tatsuya; Maruyama, ShigeoWe performed detailed photoluminescence (PL) spectroscopy studies of three different types of single-walled carbon nanotubes (SWNTs) by using samples that contain essentially only one chiral type of SWNT, (6,5), (7,5), or (10,5). The observed PL spectra unambiguously show the existence of an emission sideband at ∼140 meV below the lowest singlet excitonic (E11) level, whose identity and origin are now under debate. We find that the energy separation between the E11 level and the sideband is independent of the SWNT diameter within our experimental certainty. Based on this, we ascribe the origin of the observed sideband to coupling between K-point phonons and dipole-forbidden dark excitons, as recently suggested based on the measurement of (6,5) SWNTs.