Browsing by Author "Liu, Xiaoxue"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Depinning transition of bubble phases in a high Landau level(American Physical Society, 2015) Wang, Xuebin; Fu, Hailong; Du, Lingjie; Liu, Xiaoxue; Wang, Pengjie; Pfeiffer, L.N.; West, K.W.; Du, Rui-Rui; Lin, XiIn the higher Landau levels (N>0) a reentrant integer quantum Hall effect (RIQHE) state, which resides at fractional filling factors but exhibits integer Hall plateaus, has been previously observed and studied extensively. The nonlinear dynamics of the RIQHE were measured by microwave resonance, with the results consistent with an electronic bubble phase pinned by impurities. We have carried out depinning experiments on the N=2 bubble phases by using Corbino geometry, where depinning threshold values have been systematically measured as a function of magnetic fields and temperatures. Domain sizes and pinning potential of the bubble phases have been estimated from the nonlinear transport data.Item Observation of a Helical Luttinger Liquid in InAs/GaSb Quantum Spin Hall Edges(American Physical Society, 2015) Li, Tingxin; Wang, Pengjie; Fu, Hailong; Du, Lingjie; Schreiber, Kate A.; Mu, Xiaoyang; Liu, Xiaoxue; Sullivan, Gerard; Csáthy, Gábor A.; Lin, Xi; Du, Rui-RuiWe report on the observation of a helical Luttinger liquid in the edge of an InAs/GaSb quantum spin Hall insulator, which shows characteristic suppression of conductance at low temperature and low bias voltage. Moreover, the conductance shows power-law behavior as a function of temperature and bias voltage. The results underscore the strong electron-electron interaction effect in transport of InAs/GaSb edge states. Because of the fact that the Fermi velocity of the edge modes is controlled by gates, the Luttinger parameter can be fine tuned. Realization of a tunable Luttinger liquid offers a one-dimensional model system for future studies of predicted correlation effects.Item Thermopower and Nernst measurements in a half-filled lowest Landau level(American Physical Society, 2018) Liu, Xiaoxue; Li, Tingxin; Zhang, Po; Pfeiffer, L.N.; West, K.W.; Zhang, Chi; Du, Rui-RuiMotivated by the recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] concerning possible thermoelectric signatures of Dirac composite fermions, we perform a systematic experimental study of thermoelectric transport of an ultrahigh-mobility GaAs/AlxGa1−xAs two-dimensional electron system at filling factor v=1/2. We demonstrate that the thermopower Sxx and Nernst Sxy are symmetric and antisymmetric with respect to B=0 T, respectively. The measured properties of thermopower Sxx at v=1/2 are consistent with previous experimental results. The Nernst signals Sxy of v=1/2, which have not been reported previously, are nonzero and show a power-law relation with temperature in the phonon-drag dominant region. In the electron-diffusion dominant region, the Nernst signals Sxy of v=1/2 are found to be significantly smaller than the linear temperature dependent values predicted by Potter et al., and decreasing with temperature faster than linear dependence.Item Tuning Edge States in Strained-Layer InAs/GaInSb Quantum Spin Hall Insulators(American Physical Society, 2017) Du, Lingjie; Li, Tingxin; Lou, Wenkai; Wu, Xingjun; Liu, Xiaoxue; Han, Zhongdong; Zhang, Chi; Sullivan, Gerard; Ikhlassi, Amal; Chang, Kai; Du, Rui-RuiWe report on a class of quantum spin Hall insulators (QSHIs) in strained-layer InAs / GaInSb quantum wells, in which the bulk gaps are enhanced up to fivefold as compared to the binary InAs / GaSb QSHI. Remarkably, with consequently increasing edge velocity, the edge conductance at zero and applied magnetic fields manifests time reversal symmetry-protected properties consistent with the Z 2 topological insulator. The InAs / GaInSb bilayers offer a much sought-after platform for future studies and applications of the QSHI.