Browsing by Author "Liu, Panpan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Excess-iron driven spin glass phase in Fe1 + yTe1 - xSex(IOP Publishing Ltd, 2021) Tian, Long; Liu, Panpan; Hong, Tao; Seydel, Tilo; Lu, Xingye; Luo, Huiqian; Li, Shiliang; Dai, PengchengThe iron-chalcogenide superconductor FeTe1–xSex displays a variety of exotic features distinct from iron pnictides. Although much effort has been devoted to understanding the interplay between magnetism and superconductivity near x = 0.5, the existence of a spin glass phase with short-range magnetic order in the doping range (x ∼ 0.1–0.3) has rarely been studied. Here, we use DC/AC magnetization and (quasi) elastic neutron scattering to confirm the spin-glass nature of the short-range magnetic order in a Fe1.07Te0.8Se0.2 sample. The AC-frequency dependent spin-freezing temperature Tf generates a frequency sensitivity ΔTf(ω)/[Tf(ω)Δlog10 ω] ≈ 0.028 and the description of the critical slowing down with τ = τ0(Tf/TSG – 1)−z v gives TSG ≈ 22 K and zv ≈ 10, comparable to that of a classical spin-glass system. We have also extended the frequency-dependent Tf to the smaller time scale using energy-resolution-dependent neutron diffraction measurements, in which the TN of the short-range magnetic order increases systematically with increasing energy resolution. By removing the excess iron through annealing in oxygen, the spin-freezing behavior disappears, and bulk superconductivity is realized. Thus, the excess Fe is the driving force for the formation of the spin-glass phase detrimental to bulk superconductivity.Item In-plane uniaxial pressure-induced out-of-plane antiferromagnetic moment and critical fluctuations in BaFe2As2(Springer Nature, 2020) Liu, Panpan; Klemm, Mason L.; Tian, Long; Lu, Xingye; Song, Yu; Tam, David W.; Schmalzl, Karin; Park, J. T.; Li, Yu; Tan, Guotai; Su, Yixi; Bourdarot, Frédéric; Zhao, Yang; Lynn, Jeffery W.; Birgeneau, Robert J.; Dai, PengchengA small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe2As2, which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nematic) transition temperature Ts. Although it is generally assumed that such a pressure will not affect the intrinsic electronic/magnetic properties of the system, it is known to enhance the antiferromagnetic (AF) ordering temperature TN ( < Ts) and create in-plane resistivity anisotropy above Ts. Here we use neutron polarization analysis to show that such a strain on BaFe2As2 also induces a static or quasi-static out-of-plane (c-axis) AF order and its associated critical spin fluctuations near TN/Ts. Therefore, uniaxial pressure necessary to detwin single crystals of BaFe2As2 actually rotates the easy axis of the collinear AF order near TN/Ts, and such effects due to spin-orbit coupling must be taken into account to unveil the intrinsic electronic/magnetic properties of the system.