Browsing by Author "Liu, Jinsong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer(EMBO, 2014) Yang, Lifeng; Moss, Tyler; Mangala, Lingegowda S.; Marini, Juan; Zhao, Hongyun; Wahlig, Stephen; Armaiz-Pena, Guillermo; Jiang, Dahai; Achreja, Abhinav; Win, Julia; Roopaimoole, Rajesha; Rodriguez-Aguayo, Cristian; Mercado-Uribe, Imelda; Lopez-Berestein, Gabriel; Liu, Jinsong; Tsukamoto, Takashi; Sood, Anil K.; Ram, Prahlad T.; Nagrath, DeepakGlutamine can play a critical role in cellular growth in multiple cancers. Glutamine‐addicted cancer cells are dependent on glutamine for viability, and their metabolism is reprogrammed for glutamine utilization through the tricarboxylic acid (TCA) cycle. Here, we have uncovered a missing link between cancer invasiveness and glutamine dependence. Using isotope tracer and bioenergetic analysis, we found that low‐invasive ovarian cancer (OVCA) cells are glutamine independent, whereas high‐invasive OVCA cells are markedly glutamine dependent. Consistent with our findings, OVCA patients’ microarray data suggest that glutaminolysis correlates with poor survival. Notably, the ratio of gene expression associated with glutamine anabolism versus catabolism has emerged as a novel biomarker for patient prognosis. Significantly, we found that glutamine regulates the activation of STAT3, a mediator of signaling pathways which regulates cancer hallmarks in invasive OVCA cells. Our findings suggest that a combined approach of targeting high‐invasive OVCA cells by blocking glutamine's entry into the TCA cycle, along with targeting low‐invasive OVCA cells by inhibiting glutamine synthesis and STAT3 may lead to potential therapeutic approaches for treating OVCAs.Item Tumor necrosis factor-α and interferon-γ stimulate MUC16 (CA125) expression in breast, endometrial and ovarian cancers through NFκB(Impact Journals, LLC, 2016) Morgado, Micaela; Sutton, Margie N.; Simmons, Mary; Warren, Curtis R.; Lu, Zhen; Constantinou, Pamela E.; Liu, Jinsong; Francis, Lewis L.W.; Conlan, R.Steven; Bast, Robert C.Jr.; Carson, Daniel D.Transmembrane mucins (TMs) are restricted to the apical surface of normal epithelia. In cancer, TMs not only are over-expressed, but also lose polarized distribution. MUC16/CA125 is a high molecular weight TM carrying the CA125 epitope, a well-known molecular marker for human cancers. MUC16 mRNA and protein expression was mildly stimulated by low concentrations of TNFα (2.5 ng/ml) or IFNγ (20 IU/ml) when used alone; however, combined treatment with both cytokines resulted in a moderate (3-fold or less) to large (> 10-fold) stimulation of MUC16 mRNA and protein expression in a variety of cancer cell types indicating that this may be a general response. Human cancer tissue microarray analysis indicated that MUC16 expression directly correlates with TNFα and IFNγ staining intensities in certain cancers. We show that NFκB is an important mediator of cytokine stimulation of MUC16 since siRNA-mediated knockdown of NFκB/p65 greatly reduced cytokine responsiveness. Finally, we demonstrate that the 250 bp proximal promoter region of MUC16 contains an NFκB binding site that accounts for a large portion of the TNFα response. Developing methods to manipulate MUC16 expression could provide new approaches to treating cancers whose growth or metastasis is characterized by elevated levels of TMs, including MUC16.